当前位置:首页 >> >>

【课堂新坐标】2016-2017学年高中数学人教A版必修五 第一章解三角形 学业分层测评3 Word版含答案

学业分层测评(三) (建议用时:45 分钟) [学业达标] 一、选择题 1.为了测量 B,C 之间的距离,在河岸 A,C 处测量,如图 129,测得下面 四组数据,较合理的是( ) 图 129 A.c 与 α B.c 与 b C.b,c 与 β D.b,α 与 γ 【解析】 【答案】 因为测量者在 A,C 处测量,所以较合理的应该是 b,α 与 γ. D 2. 轮船 A 和轮船 B 在中午 12 时同时离开海港 O, 两船航行方向的夹角为 120° , 两船的航行速度分别为 25 n mile/h,15 n mile/h,则 14 时两船之间的距离是( A.50 n mile C.90 n mile B.70 n mile D.110 n mile ) 【解析】 到 14 时,轮船 A 和轮船 B 分别走了 50 n mile,30 n mile,由余弦 定理得 两船之间的距离为 l= 502+302-2×50×30×cos 120° =70 (n mile). B 【答案】 3.如图 1210,要测量河对岸 A,B 两点间的距离,今沿河岸选取相距 40 米 的 C,D 两点,测得∠ACB=60° ,∠BCD=45° ,∠ADB=60° ,∠ADC=30° ,AD =20( 3+1),则 A,B 间距离是( ) 图 1210 A.20 2米 C.20 6米 B.20 3米 D.40 2米 【解析】 可得 DB=DC=40,AD=20( 3+1),∠ADB=60° ,所以在△ADB 中,由余弦定理得 AB=20 6(米). 【答案】 C 4.在地面上点 D 处,测量某建筑物的高度,测得此建筑物顶端 A 与底部 B 的仰角分别为 60° 和 30° ,已知建筑物底部高出地面 D 点 20 m,则建筑物高度为 ( ) A.20 m C.40 m B.30 m D.60 m 【解析】 如图,设 O 为顶端在地面的射影,在 Rt△BOD 中,∠ODB=30° , OB=20,BD=40,OD=20 3, 在 Rt△AOD 中,OA=OD· tan 60° =60,∴AB=OA-OB=40(m). 【答案】 C 5.如图 1211 所示,在地面上共线的三点 A,B,C 处测得一建筑物的仰角 分别为 30° ,45° ,60° ,且 AB=BC=60 m,则建筑物的高度为( ) 图 1211 A.15 6 m C.25 6 m 【解析】 B.20 6 m D.30 6 m 设建筑物的高度为 h,由题图知, 2 3 PA=2h,PB= 2h,PC= 3 h, ∴在△PBA 和△PBC 中,分别由余弦定理, 602+2h2-4h2 得 cos∠PBA= , 2×60× 2h 4 602+2h2-3h2 cos∠PBC= . 2×60× 2h ∵∠PBA+∠PBC=180° , ∴cos∠PBA+cos∠PBC=0. ③ ① ② 由①②③,解得 h=30 6或 h=-30 6(舍去),即建筑物的高度为 30 6 m. 【答案】 二、填空题 6.有一个长为 1 千米的斜坡,它的倾斜角为 75° ,现要将其倾斜角改为 30° , 则坡底要伸长 【解析】 千米. 如图,∠BAO=75° ,C=30° ,AB=1, D ∴∠ABC=∠BAO-∠BCA=75° -30° =45° . AB 在△ABC 中,sin C= AC , sin ∠ABC 2 1× 2 1 = 2(千米). 2 AB· sin ∠ABC ∴AC= = sin C 【答案】 2 7.如图 1212,为了测量河的宽度,在一岸边选定两点 A,B,望对岸的标记 物 C,测得∠CAB=30° ,∠CBA=75° ,AB=120 m,则河的宽度是 m. 图 1212 【解析】 CD CD tan 30° = AD,tan 75° =DB , 又 AD+DB=120, ∴AD· tan 30° =(120-AD)· tan 75° , ∴AD=60 3,故 CD=60. 【答案】 60 8.一次机器人足球比赛中,甲队 1 号机器人由点 A 开始做匀速直线运动,到 达点 B 时,发现足球在点 D 处正以 2 倍于自己的速度向点 A 做匀速直线滚动,如 图 1213 所示,已知 AB=4 2 dm,AD=17 dm,∠BAC=45° ,若忽略机器人原 地旋转所需的时间, 则该机器人最快可在距 A 点 学号:05920061】 dm 的 C 处截住足球.【导 图 1213 【解析】 设机器人最快可在点 C 处截住足球, 点 C 在线段 AD 上,设 BC=x dm,由题意知 CD=2x dm,AC=AD-CD=(17 -2x)dm. 在△ABC 中,由余弦定理得 BC2=AB2+AC2-2AB· AC· cos A, 37 即 x2=(4 2)2+(17-2x)2-8 2(17-2x)cos 45° ,解得 x1=5,x2= 3 . 23 ∴AC=17-2x=7(dm),或 AC=- 3 (dm)(舍去). ∴该机器人最快可在线段 AD 上距 A 点 7 dm 的点 C 处截住足球. 【答案】 三、解答题 9.A,B,C,D 四个景点,如图 1214,∠CDB=45° ,∠BCD=75° ,∠ADC =15° .A,D 相距 2 km,C,D 相距(3 2- 6)km,求 A,B 两景点的距离. 7 图 1214 【解】 在△BCD 中, ∠CBD=180° -∠BCD-∠CDB=60° , 由正弦定理得 BD CD = , sin ∠BCD sin ∠CBD CD· sin 75° 即 BD= sin 60° =2. 在△ABD 中,∠ADB=45° +15° =60° ,BD=AD, ∴△ABD 为等边三角形, ∴AB=2. 答:A,B 两景点的距离为 2 km. 10.江岸边有一炮台高 30 m,江中有两条

更多相关标签: