当前位置:首页 >> 数学 >>

高中数学北师大版必修5 第三章2.2 一元二次不等式的应用 作业2 含解析


, [学生用书单独成册]) [A.基础达标] ? ?x+3 ? 1.已知集合 M=?x? <? 0,N={x|x≤-3},则集合{x|x≥1}等于( ) x - 1 ? ? ? A.M∩N B.M∪N C.?R(M∩N) D.?R(M∪N) x+3 解析:选 D. <0?(x+3)(x-1)<0,故集合 M 可化为{x|-3<x<1},将集合 M 和 x-1 集合 N 在数轴上表示出来(如图),易知答案. 2.若集合 A={x|ax2-ax+1<0}=?,则实数 a 的集合是( ) A.{a|0<a<4} B.{a|0≤a<4} C.{a|0<a≤4} D.{a|0≤a≤4} 解析:选 D.若 a=0 时符合题意,若 a>0 时,相应二次方程中的 Δ=a2-4a≤0,得{a|0 <a≤4},综上得{a|0≤a≤4},故选 D. x+5 3.不等式 ≥2 的解集是( ) (x-1)2 1? ? 1 ? A.? ?-3,2? B.?-2,3? 1 ? ? 1 ? C.? ?2,1?∪(1,3] D.?-2,1?∪(1,3] 解析:选 D.因为(x-1)2>0, x+5 由 ≥2 可得 x+5≥2(x-1)2 且 x≠1. (x-1)2 1 所以 2x2-5x-3≤0 且 x≠1,所以- ≤x≤3 且 x≠1. 2 1 ? 所以不等式的解集是? ?-2,1?∪(1,3]. 4.若(m+1)x2-(m-1)x+3(m-1)<0 对任意实数 x 恒成立,则实数 m 的取值范围是 ( ) A.m>1 B.m<-1 13 13 C.m<- D.m>1 或 m<- 11 11 解析:选 C.当 m=-1 时,不等式变为 2x-6<0,即 x<3,不符合题意. 当 m≠-1 时,由题意知 ?m+1<0, ? ? 2 ?Δ=(m-1) -4(m+1)×3(m-1)<0, ? ? ?m+1<0, 化简得? 2 ?11m +2m-13>0, ? 13 解得 m<- . 11 5.已知关于 x 的不等式 x2-4x≥m 对任意 x∈(0,1]恒成立,则有( ) A.m≤-3 B.m≥-3 C.-3≤m<0 D.m≥-4 2 解析:选 A.令 f(x)=x -4x=(x-2)2-4,在(0,1]上为减函数,当 x=1 时,f(x)min=- 3,所以 m≤-3. x-4a 6.若 a<0,则不等式 >0 的解集是________. x+5a 解析:原不等式可化为(x-4a)(x+5a)>0, 由于 a<0,所以 4a<-5a, 因此原不等式解集为{x|x<4a 或 x>-5a}. 答案:{x|x<4a 或 x>-5a} 7.某省每年损失耕地 20 万亩,每亩耕地价格为 24 000 元,为了减少耕地损失,决定 5 以每年损失耕地价格的 t%征收耕地占用税,这样每年的耕地损失可减少 t 万亩,为了既减 2 少耕地的损失又保证此项税收一年不少于 9 000 万元,则 t 的取值范围是________. 5 解析:由题意得(20- t)×24 000×t%≥9 000, 2 2 化简得 t -8t+15≤0,解得 3≤t≤5. 答案:3≤t≤5 8.已知 a>b>c,a+b+c=0,当 0<x<1 时,代数式 ax2+bx+c 的值是________(填 “正数”、“负数”或“0”). 解析:法一:令 f(x)=ax2+bx+c, 则 f(1)=a+b+c=0. 因为 a>b>c,a+b+c=0, 所以 a>0,c<0, 又 f(0)=c<0, f(x)的图像如图所

相关文章:
...第三章2.2 一元二次不等式的应用 作业2 含解析.doc
高中数学北师大版必修5 第三章2.2 一元二次不等式的应用 作业2 含解析 -
...第三章2.2_一元二次不等式的应用_作业2 含解析.doc
高中数学北师大版高二必修5_第三章2.2_一元二次不等式的应用_作业2 含解析_数学_高中教育_教育专区。高中数学北师大版高二必修 5_第三章 2.2_一元二次不...
...第三章2.2 一元二次不等式的应用 作业 含解析.doc
高中数学北师大版必修5 第三章2.2 一元二次不等式的应用 作业 含解析 - [
...第三章2.2 一元二次不等式的应用 作业2 含解析.doc
高中数学北师大版必修5 第三章2.2 一元二次不等式的应用 作业2 含解析 -
...第三章2.2 一元二次不等式的应用 作业2 Word版含解....doc
【同步练习】高中数学北师大版必修5 第三章2.2 一元二次不等式的应用 作业2 Word版含解析 - , [学生用书单独成册]) [A.基础达标] ? ?x+3 ? 1.已知...
高中数学北师大版必修5 第三章2.1 一元二次不等式的解....doc
高中数学北师大版必修5 第三章2.1 一元二次不等式的解法 作业2 含解析 - , [A.基础达标] 1.不等式-x2-x+2≥0 的解集是( A.{x|x≤-2 或 x≥...
...第三章2.2_一元二次不等式的应用_作业 含解析.doc
高中数学北师大版高二必修 5_第三章 2.2_一元二次不等式的 应用_作业 含解析 [学业水平训练] 1.关于 x 的方程 mx2+(2m+1)x+m=0 有两个不等的实根...
...五:第3章 §2-2.2 一元二次不等式的应用含解析.doc
2018年高中数学北师大版必修五:第3章 §2-2.2 一元二次不等式的应用含解析 - [A 基础达标] x+5 1.不等式 ≥2 的解集是( (x-1)2 1? A.? ?-3...
...数学必修五第3章 §2-2.2 一元二次不等式的应用练习....doc
2018年北师大版高中数学必修五第3章 §2-2.2 一元二次不等式的应用练习含解析 - 2018 年北师大版高中数学必修五达标练习含解析 [A 基础达标] x+5 1.不...
...五:第3章 §2-2.2 一元二次不等式的应用含解析.doc
2018年高中数学北师大版必修五:第3章 §2-2.2 一元二次不等式的应用含解析 - [A 基础达标] x+5 1.不等式 ≥2 解集是( (x-1)2 1? A.? ?-3,...
...§2-2.2 一元二次不等式的应用 Word版含解析.doc
高中数学北师大版必修五达标练习:第3章 §2-2.2 一元二次不等式的应用 Word版含解析 - [A 基础达标] x+5 1.不等式 ≥2 的解集是( (x-1)2 1? A...
...高中数学北师大版必修5练习:3.2.2 一元二次不等式的应用(含....doc
暂无评价|0人阅读|0次下载 【步步高】高中数学北师大版必修5练习:3.2.2 一元二次不等式的应用(含答案解析)_数学_高中教育_教育专区。2.2 课时目标 一元二...
...五练习:3.2.2一元二次不等式的应用(含答案解析).doc
【课堂新坐标】高中数学北师大版必修五练习:3.2.2一元二次不等式的应用(含答案解析) - 学业分层测评(十七) (建议用时:45 分钟) [学业达标] 一、选择题 x...
...版必修五课件:第三章 2.2 一元二次不等式的应用_图....ppt
高中数学北师大版必修五课件:第三章 2.2 一元二次不等式的应用_数学_高中教育_教育专区。第三章 不等式 §2.2 一元二次不等式的应用 学习目标 1.会解...
2018年高中数学北师大版必修五:第3章 §2-2.1 一元二次....doc
2018年高中数学北师大版必修五:第3章 §2-2.1 一元二次不等式的解法含解析 - [A 基础达标] 1.不等式-x2-x+2≥0 的解集是( A.{x|x≤-2 或 x...
...版高中数学第三章不等式2.2一元二次不等式的应用学....doc
2017-2018版高中数学第三章不等式2.2一元二次不等式的应用学案北师大版必修5_高三数学_数学_高中教育_教育专区。2 .2 学习目标 一元二次不等式的应用 1.会...
高中数学第三章不等式17一元二次不等式的应用课时作业....doc
高中数学第三章不等式17一元二次不等式的应用课时作业北师大版必修5-含答案_...(-2,2) 解析:(1)当 a-2=0,即 a=2 时,不等式即为-4<0,对一切 x...
高中数学北师大版必修5课件:第3章2.2《一元二次不等式....ppt
高中数学北师大版必修5课件:第3章2.2一元二次不等式的应用》_数学_高中教育_教育专区。高中数学北师大版必修5课件 学习目标 1.掌握分式不等式,高次不等式的...
高中数学北师大版必修5同步精练:3.2一元二次不等式 含答案.doc
高中数学北师大版必修5同步精练:3.2一元二次不等式 含答案_数学_高中教育_教育专区。2.1 一元二次不等式的解法 基础巩固 1 不等式-6x2-x+2≤0 的解集...
高中数学第三章不等式3.2.2一元二次不等式的应用学案北....doc
高中数学第三章不等式3.2.2一元二次不等式的应用学案北师大版必修5_高中教育_教育专区。3.2.2 一元二次不等式应用 一、学习目标 1. 掌握一元二次不等式...
更多相关标签: