当前位置:首页 >> 理化生 >>

高中物理必修2知识点详细归纳


第四章 曲线运动 第一模块:曲线运动、运动的合成和分解 『夯实基础知识』 ■考点一、曲线运动 1、定义:运动轨迹为曲线的运动。 2、物体做曲线运动的方向: 做曲线运动的物体, 速度方向始终在轨迹的切线方向上,即某一点的瞬时速 度的方向,就是通过该点的曲线的切线方向。 3、曲线运动的性质 由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线, 所以曲线运动的速度方向时刻

变化。即使其速度大小保持恒定,由于其方向不断 变化,所以说:曲线运动一定是变速运动。 由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲 线运动的物体的加速度必不为零,所受到的合外力必不为零。 4、物体做曲线运动的条件 (1)物体做一般曲线运动的条件 物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。 (2)物体做平抛运动的条件 物体只受重力,初速度方向为水平方向。 可推广为物体做类平抛运动的条件:物体受到的恒力方向与物体的初速度方 向垂直。 (3)物体做圆周运动的条件 物体受到的合外力大小不变,方向始终垂直于物体的速度方向,且合外力方 向始终在同一个平面内(即在物体圆周运动的轨道平面内) 总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。 5、分类 ⑴匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。 ⑵非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做 的曲线运动,如圆周运动。 ■考点二、运动的合成与分解 1、运动的合成:从已知的分运动来求合运动,叫做运动的合成,包括位移、 速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。运动合成 重点是判断合运动和分运动,一般地,物体的实际运动就是合运动。 2、运动的分解:求一个已知运动的分运动,叫运动的分解,解题时应按实际 “效果”分解,或正交分解。 3、合运动与分运动的关系: ⑴运动的等效性(合运动和分运动是等效替代关系,不能并存) ; ⑵等时性:合运动所需时间和对应的每个分运动时间相等

⑶独立性:一个物体可以同时参与几个不同的分运动,物体在任何一个方向 的运动, 都按其本身的规律进行, 不会因为其它方向的运动是否存在而受到影响。 ⑷运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四 边形定则。 ) 4、运动的性质和轨迹 ⑴物体运动的性质由加速度决定(加速度为零时物体静止或做匀速运动;加 速度恒定时物体做匀变速运动;加速度变化时物体做变加速运动) 。 ⑵物体运动的轨迹(直线还是曲线)则由物体的速度和加速度的方向关系决 定 (速度与加速度方向在同一条直线上时物体做直线运动;速度和加速度方向成 角度时物体做曲线运动) 。 常见的类型有: (1)a=0:匀速直线运动或静止。 (2)a 恒定:性质为匀变速运动,分为: ① v、a 同向,匀加速直线运动; ②v、a 反向,匀减速直线运动; ③v、a 成角度,匀变速曲线运动(轨迹在 v、a 之间,和速度 v 的方向相切, 方向逐渐向 a 的方向接近,但不可能达到。 ) (3)a 变化:性质为变加速运动。如简谐运动,加速度大小、方向都随时间 变化。 具体如: ①两个匀速直线运动的合运动一定是匀速直线运动。 ②一个匀速直线运动和一个匀变速直线运动的合运动仍然是匀变速运动,当 两者共线时为匀变速直线运动,不共线时为匀变速曲线运动。 ③两个匀变速直线运动的合运动一定是匀变速运动,若合初速度方向与合加 速度方向在同一条直线上时, 则是直线运动,若合初速度方向与合加速度方向不 在一条直线上时,则是曲线运动。 第二模块:平抛运动 『夯实基础知识』 平抛运动 1、定义:平抛运动是指物体只在重力作用下,从水平初速度开始的运动。 2、条件: a、只受重力;b、初速度与重力垂直. 3、运动性质:尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为 重力加速度 g,因而平抛运动是一个匀变速曲线运动。 a ? g 4、 研究平抛运动的方法: 通常, 可以把平抛运动看作为两个分运动的合动动: 一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒 力方向)的匀加速直线运动。水平方向和竖直方向的两个分运动既具有独立性,

又具有等时性.

V0 x/2 x x O θ α S Vx=V0 y) P(x, Vy V y
5、平抛运动的规律 ①水平速度:vx=v0,竖直速度:vy=gt 合速度(实际速度)的大小: v ? v x ? v y 物体的合速度 v 与 x 轴之间的夹角为:
2 2

tan? ?

vy vx

?

gt v0
1 2 gt 2

②水平位移: x ? v0t ,竖直位移 y ?

合位移(实际位移)的大小: s ? x 2 ? y 2 物体的总位移 s 与 x 轴之间的夹角为:
tan? ? y gt ? x 2v0

可见,平抛运动的速度方向与位移方向不相同。 而且 tan ? ? 2 tan ? 而 ? ? 2? 轨迹方程:由 x ? v0t 和 y ? 轨迹为抛物线。 6、平抛运动的几个结论 ①落地时间由竖直方向分运动决定: 由h ?
1 2 2h gt 得: t ? 2 g

g 2 1 2 gt 消去 t 得到: y ? x 。可见平抛运动的 2 2 2v0

②水平飞行射程由高度和水平初速度共同决定:

x ? v0t ? v0

2h g

③平抛物体任意时刻瞬时速度 v 与平抛初速度 v0 夹角 θ a 的正切值为位移 s 与水平位移 x 夹角 θ 正切值的两倍。 ④平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛 出点的距离都等于水平位移的一半。
1 2 gt gt 2 x ? ?s? 证明: t an? ? v0 s 2

⑤平抛运动中,任意一段时间内速度的变化量 Δ v=gΔ t,方向恒为竖直向 下(与 g 同向) 。任意相同时间内的 Δ v 都相同(包括大小、方向) ,如右图。
V 0 V1 V 2
△ V △ V

V V 3 △

⑥以不同的初速度, 从倾角为 θ 的斜面上沿水平方向抛出的物体,再次落到 斜面上时速度与斜面的夹角 a 相同,与初速度无关。 (飞行的时间与速度有关, 速度越大时间越长。 )
A
y θ x vy α v θ vx v0

如右图:所以 t ? 2v0 tan?
g

tan(a ? ? ) ?

vy vx

?

gt v0

所以 tan(a ? ? ) ? 2 tan? ,θ 为定值故 a 也是定值与速度无关。 ⑦速度 v 的方向始终与重力方向成一夹角,故其始终为曲线运动,随着时间 的增加, tan ? 变大, ? ? ,速度 v 与重力 的方向越来越靠近,但永远不能到达。 ⑧从动力学的角度看:由于做平抛运动的物体只受到重力,因此物体在整个 运动过程中机械能守恒。 7、平抛运动的实验探究 ①如图所示,用小锤打击弹性金属片,金属片把A球沿水平方向抛出,同时B 球松开,自由下落,A、B两球同时开始运动。观察到两球同时落地,多次改变小 球距地面的高度和打击力度,重复实验,观察到两球落地,这说明了小球A在竖 直方向上的运动为自由落体运动。

②如图,将两个质量相等的小钢球从斜面的同一高度处由静止同时释放,滑 道2与光滑水平板吻接,则将观察到的现象是A、B两个小球在水平面上相遇,改 变释放点的高度和上面滑道对地的高度,重复实验,A、B两球仍会在水平面上相 遇,这说明平抛运动在水平方向上的分运动是匀速直线运动。

8、类平抛运动 (1) 有时物体的运动与平抛运动很相似, 也是在某方向物体做匀速直线运动, 另一垂直方向做初速度为零的匀加速直线运动。 对这种运动, 像平抛又不是平抛, 通常称作类平抛运动。 2、类平抛运动的受力特点: 物体所受合力为恒力,且与初速度的方向垂直。 3、类平抛运动的处理方法: 在初速度 v0 方向做匀速直线运动,在合外力方向做初速度为零的匀加速直线 运动,加速度 a ?

F合 。处理时和平抛运动类似,但要分析清楚其加速度的大小 m

和方向如何,分别运用两个分运动的直线规律来处理。
第三模块:圆周运动

『夯实基础知识』 匀速圆周运动 1、定义:物体运动轨迹为圆称物体做圆周运动。 2、分类: ⑴匀速圆周运动: 质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度相等,这种运动 就叫做匀速圆周运动。 物体在大小恒定而方向总跟速度的方向垂直的外力作用下所做的曲线运动。 注意:这里的合力可以是万有引力——卫星的运动、库仑力——电子绕核旋 转、 洛仑兹力——带电粒子在匀强磁场中的偏转、弹力——绳拴着的物体在光滑 水平面上绕绳的一端旋转、 重力与弹力的合力——锥摆、静摩擦力——水平转盘

上的物体等. ⑵变速圆周运动:如果物体受到约束,只能沿圆形轨道运动,而速率不断变 化——如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动.合力的方 向并不总跟速度方向垂直. 3、描述匀速圆周运动的物理量 (1)轨道半径(r) :对于一般曲线运动,可以理解为曲率半径。 (2)线速度(v) : ①定义:质点沿圆周运动,质点通过的弧长 S 和所用时间 t 的比值,叫做匀 速圆周运动的线速度。 ②定义式: v ?
s t

③线速度是矢量:质点做匀速圆周运动某点线速度的方向就在圆周该点切线 方向上,实际上,线速度是速度在曲线运动中的另一称谓,对于匀速圆周运动, 线速度的大小等于平均速率。 (3)角速度(ω ,又称为圆频率) : ①定义:质点沿圆周运动,质点和圆心的连线转过的角度跟所用时间的比值 叫做匀速圆周运动的角速度。 ②大小: ? ?
?
t

?

2? T

(φ 是 t 时间内半径转过的圆心角)

③单位:弧度每秒(rad/s) ④物理意义:描述质点绕圆心转动的快慢 (4)周期(T) :做匀速圆周运动的物体运动一周所用的时间叫做周期。 (5)频率(f,或转速 n) :物体在单位时间内完成的圆周运动的次数。 各物理量之间的关系:
s 2?r ? ? ? 2?rf ? ?r ? t T ? ?r ??v ? ? 2? t ? ?? ? ? 2?f ? t T ? v?

注意:计算时,均采用国际单位制,角度的单位采用弧度制。 (6)圆周运动的向心加速度 ①定义:做匀速圆周运动的物体所具有的指向圆心的加速度叫向心加速度。 ② 大 小 : an ?
2

v2 ? ? 2r ( 还 有 其 它 的 表 示 形 式 , 如 : r

? 2? ? 2 an ? v? ? ? ? r ? ?2?f ? r ) ?T ?
③方向:其方向时刻改变且时刻指向圆心。 对于一般的非匀速圆周运动,公式仍然适用,为物体的加速度的法向加速度

分量,r 为曲率半径;物体的另一加速度分量为切向加速度 a? ,表征速度大小改 变的快慢(对匀速圆周运动而言, a? =0) (7)圆周运动的向心力 匀速圆周运动的物体受到的合外力常常称为向心力,向心力的来源可以是任 何性质的力,常见的提供向心力的典型力有万有引力、洛仑兹力等。对于一般的 非匀速圆周运动,物体受到的合力的法向分力 Fn 提供向心加速度(下式仍然适 用) ,切向分力 F? 提供切向加速度。
v2 向心力的大小为: Fn ? m an ? m ? m? 2 r (还有其它的表示形式,如: r

? 2? ? 2 ;向心力的方向时刻改变且时刻指向圆心。 Fn ? mv? ? m? ? r ? m?2?f ? r ) ?T ?
实际上,向心力公式是牛顿第二定律在匀速圆周运动中的具体表现形式。 五、离心运动 1、定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动 所需向心力情况下,就做远离圆心的运动,这种运动叫离心运动。 2、本质: ①离心现象是物体惯性的表现。 ②离心运动并非沿半径方向飞出的运动,而是运动半径越来越大的运动或沿 切线方向飞出的运动。 ③离心运动并不是受到什么离心力,根本就没有这个离心力。 3、条件: 当物体受到的合外力 Fn ? man 时,物体做匀速圆周运动; 当物体受到的合外力 Fn<man 时,物体做离心运动 当物体受到的合外力 Fn>man 时,物体做近心运动 实际上,这正是力对物体运动状态改变的作用的体现,外力改变,物体的运 动情况也必然改变以适应外力的改变。
F=0

2

v

2 F<m v R 2 F=m v R

4.两类典型的曲线运动的分析方法比较 (1) 对于平抛运动这类“匀变速曲线运动”,我们的分析方法一般是“在固 定的坐标系内正交分解其位移和速度”,运动规律可表示为
?x ? ?0t, ?? x ? ? 0 , ? ? 1 2 ; ?? ? gt . y ? gt ? y ? 2 ?

(2)对于匀速圆周运动这类“变变速曲线运动”,我们的分析方法一般是 “在运动的坐标系内正交分解其力和加速度”,运动规律可表示为

?F切 ? m a切 ? 0, ? ? m? 2 F ? F ? m a ? ? m r? 2 ? m??. ? 法 向 向 r ?
第五章:万有引力定律 『夯实基础知识』 1.开普勒行星运动三定律简介(轨道、面积、比值) 丹麦开文学家开普勒信奉日心说,对天文学家有极大的兴趣,并有出众的数 学才华,开普勒在其导师弟谷连续 20 年对行星的位置进行观测所记录的数据研 究的基楚上,通过四年多的刻苦计算,最终发现了三个定律。 第一定律:所有行星都在椭圆轨道上运动,太阳则处在这些椭圆轨道的一个 焦点上; 第二定律:行星沿椭圆轨道运动的过程中,与太阳的连线在单位时间内扫过 的面积相等; 第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都 相等.即
r3 ?k T2

人造地球卫星

开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的基础上概括 出的,给出了行星运动的规律。 2.万有引力定律及其应用 (1) 内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力大小跟它 们的质量成积成正比, 跟它们的距离平方成反比,引力方向沿两个物体的连线方 向。
F ?G Mm (1687 年) r2

G ? 6.67 ?10?11 N ? m 2 / kg 2 叫做引力常量,它在数值上等于两个质量都是 1kg
的物体相距 1m 时的相互作用力,1798 年由英国物理学家卡文迪许利用扭秤装置 测出。 万有引力常量的测定——卡文迪许扭秤 实验原理是力矩平衡。

实验中的方法有力学放大(借助于力矩将万有引力的作用效果放大)和光学 放大(借助于平面境将微小的运动效果放大) 。 万有引力常量的测定使卡文迪许成为“能称出地球质量的人”:对于地面附 近的物体 m,有 m g ? G
gR 可得到 mE ? E 。 G
2

mE m (式中 RE 为地球半径或物体到地球球心间的距离) , 2 RE

(2)定律的适用条件: 严格地说公式只适用于质点间的相互作用,当两个物体 间的距离远远大于物体本身的大小时,公式也可近似使用,但此时 r 应为两物体 重心间的距离.对于均匀的球体,r 是两球心间的距离. 当两个物体间的距离无限靠近时,不能再视为质点,万有引力定律不再适用, 不能依公式算出 F 近为无穷大。 注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普 遍的规律之一,式中引力恒量 G 的物理意义是:G 在数值上等于质量均为 1kg 的 两个质点相距 1m 时相互作用的万有引力. (3) 地球自转对地表物体重力的影响。 重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转 时需要向心力. 重力实际上是万有引力的一个分力.另一个分力就是物体随地球 自转时需要的向心力,如图所示,在纬度为 ? 的地表处,万有引力的一个分力充 当物体随地球一起绕地轴自转所需的向心力 F 向=mRcos ? ·ω 2(方向垂直于地 轴指向地轴) ,而万有引力的另一个分力就是通常所说的重力 mg,其方向与支持 力 N 反向,应竖直向下,而不是指向地心。 由于纬度的变化,物体做圆周运动的向心力 F 向不断变化,因而表面物体的 重力随纬度的变化而变化,即重力加速度 g 随纬度变化而变化,从赤道到两极 R 逐渐减小,向心力 mRcos ? ·ω 2 减小,重力逐渐增大,相应重力加速度 g 也逐渐 增大。
ω N O′ F心 m

O F引 mg



在赤道处,物体的万有引力分解为两个分力 F 向和 m2g 刚好在一条直线上,则 有 F=F 向+m2g,所以 m2g=F 一 F 向=G
m1m2 r
2

-m2Rω

2 自



物体在两极时,其受力情况如图丙所示,这时物体不再做圆周运动,没有向 心力,物体受到的万有引力 F 引和支持力 N 是一对平衡力,此时物体的重力 mg=

N=F 引。
ω F引 o N F引 N o ω





综上所述 重力大小:两个极点处最大,等于万有引力;赤道上最小,其他地方介于两 者之间,但差别很小。 重力方向:在赤道上和两极点的时候指向地心,其地方都不指向地心,但与 万有引力的夹角很小。 由于地球自转缓慢,物体需要的向心力很小,所以大量的近似计算中忽略了 自转的影响, 在此基础上就有: 地球表面处物体所受到的地球引力近似等于其重 GmM 力,即 ≈mg R2 说明:由于地球自转的影响,从赤道到两极,重力的变化为千分之五;地面 到地心的距离每增加一千米,重力减少不到万分之三,所以,在近似的计算中, 认为重力和万有引力相等。 万有引力定律的应用: 基本方法: 卫星或天体的运动看成匀速圆周运动, 方法:轨道上正常转:
G Mm v2 4? 2 2 ? m ? m ? r ? m r r r2 T2

F 万=F 心(类似原子模型)

地面附近:G

Mm = mg ?GM=gR2 (黄金代换式) 2 R

(1)天体表面重力加速度问题 通常的计算中因重力和万有引力相差不大, 而认为两者相等, 即 m2g=G

m1 m2 , R2

g=GM/R2 常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g 随物 r 体离地面高度的增大而减小,即 gh=GM/(R+h)2,比较得 gh=( )2·g R?h 设天体表面重力加速度为 g,天体半径为 R,由 mg= G 得两个不同天体表面重力加速度的关系为 (2)计算中心天体的质量 某星体 m 围绕中心天体 m 中做圆周运动的周期为 T, 圆周运动的轨道半径为 r, 则:
g1 R22 M 1 ? ? g 2 R12 M 2

Mm M 得 g= G 2 ,由此推 2 R R

由G

m中m 4? 2 r 3 ? 2? ? m ? 得: ? m? ? r 中 GT 2 r2 ?T ?

2

例如:利用月球可以计算地球的质量,利用地球可以计算太阳的质量。 可以注意到:环绕星体本身的质量在此是无法计算的。 (3)计算中心天体的密度 ρ =
M 3? ? r 2 M = = 2 3 V 4 ? ? R 3 GT R 3

由上式可知,只要用实验方法测出卫星做圆周运动的半径 r 及运行周期 T, 就可以算出天体的质量 M.若知道行星的半径则可得行星的密度 (4)发现未知天体 用万有引力去分析已经发现的星体的运动,可以知道在此星体附近是否有其 他星体,例如:历史上海王星是通过对天王星的运动轨迹分析发现的。冥王星是 通过对海王星的运动轨迹分析发现的 人造地球卫星。 这里特指绕地球做匀速圆周运动的人造卫星, 实际上大多数卫星轨道是椭圆, 而中学阶段对做椭圆运动的卫星一般不作定量分析。 1、 卫星的轨道平面: 由于地球卫星做圆周运动的向心力是由万有引力提供的, 所以卫星的轨道平面一定过地球球心,球球心一定在卫星的轨道平面内。 2、原理:由于卫星绕地球做匀速圆周运动,所以地球对卫星的引力充当卫星 所需的向心力,于是有
Gm M ?2 2? ? m a ? m ? m? 2 r ? m( ) 2 r 2 r T r

实际是牛顿第二定律的具体体现 3、表征卫星运动的物理量:线速度、角速度、周期等: (1)向心加速度 a向 与 r 的平方成反比。
GM 当 r 取其最小值时, a向 取得最大值。 r2 GM a 向 max= 2 =g=9.8m/s2 R

a向 =

(2)线速度 v 与 r 的平方根成反比

v=

GM ∴当 h↑,v↓ r

当 r 取其最小值地球半径 R 时,v 取得最大值。 vmax= (3)角速度 ? 与 r 的三分之三次方成百比

GM = Rg =7.9km/s R

?=

GM ∴当 h↑,ω ↓ r3 GM g = ≈1.23×10 3 R R

当 r 取其最小值地球半径 R 时,? 取得最大值。? max=
-3

rad/s (4)周期 T 与 r 的二分之三次方成正比。 T=2 ?

r3 ∴当 h↑,T↑ GM

当 r 取其最小值地球半径 R 时,T 取得最小值。 Tmin=2 ?

R3 R =2 ? ≈84 min GM g

卫星的能量:(类似原子模型) r 增 ?v 减小(EK 减小<Ep 增加),所以 E 总增加;需克服引力做功越多,地面上 需要的发射速度越大 应该熟记常识: 地球公转周期 1 年, 自转周期 1 天=24 小时=86400s, 地球表面半径 6.4x 10 km 表面重力加速度 g=9.8 m/s2 月球公转周期 30 天
3

4.宇宙速度及其意义 (1)三个宇宙速度的值分别为 第一宇宙速度(又叫最小发射速度、最大环绕速度、近地环绕速度) : 物体围绕地球做匀速圆周运动所需要的最小发射速度,又称环绕速度,其值 为: v1 ? 7.9km/s 第一宇宙速度的计算. 方法一:地球对卫星的万有引力就是卫星做圆周运动的向心力. G
mM

?r ? h ?

2

=m

v2 GM ,v= ?r ? h ? r?h

。当 h↑,v↓,所以在地球表面附近卫星的速度

V1 ? 是它运行的最大速度。 其大小为 r>>h (地面附近) 时,

GM =7. 9×103m/s r

方法二:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就 是卫星做圆周运动的向心力.

v12 .当 r>>h 时.gh≈g mg ? m ? r ? h?
所以 v1= gr =7.9×103m/s 第二宇宙速度(脱离速度) : 如果卫生的速大于 7.9km/s 而小于 11.2km/s ,卫星将做椭圆运动。当卫星的 速度等于或大于 11.2km/s 的时候,物体就可以挣脱地球引力的束缚,成为绕太阳 运动的人造行星,或飞到其它行星上去,把 v2 ? 11.2km/s叫做第二宇宙速度,第 二宇宙速度是挣脱地球引力束缚的最小发射速度。 第三宇宙速度:物体挣脱太阳系而飞向太阳系以外的宇宙空间所需要的最小 发射速度,又称逃逸速度,其值为: v3 ? 16.7km/s (2)当发射速度 v 与宇宙速度分别有如下关系时, 被发射物体的运动情况将有 所不同 ①当 v<v1 时,被发射物体最终仍将落回地面; ②当 v1≤v<v2 时,被发射物体将环绕地球运动,成为地球卫星; ③当 v2≤v<v3 时,被发射物体将脱离地球束缚,成为环绕太阳运动的“人造 行星”; ④当 v≥v3 时,被发射物体将从太阳系中逃逸。 5.同步卫星(所有的通迅卫星都为同步卫星) ⑴同步卫星。 “同步”的含义就是和地球保持相对静止 (又叫静止轨道卫星) , 所以其周期等于地球自转周期,既 T=24h, ⑵特点 (1) 地球同步卫星的轨道平面,非同步人造地球卫星其轨道平面可与地轴有 任意夹角, 而同步卫星一定位于赤道的正上方,不可能在与赤道平行的其他平面 上。 这是因为: 不是赤道上方的某一轨道上跟着地球的自转同步地作匀速圆运动, 卫星的向心力为地球对它引力的一个分力 F1,而另一个分力 F2 的作用将使其运 行轨道靠赤道,故此,只有在赤道上空,同步卫星才可能在稳定的轨道上运行。

(2)地球同步卫星的周期:地球同步卫星的运转周期与地球自转周期相同。

(3)同步卫星必位于赤道上方 h 处,且 h 是一定的.
G Mm r
2

? m? 2 r

3

得 r?

GM

?

2



h ? r ? R ? 35800 km

(4)地球同步卫星的线速度:环绕速度 由G

GM Mm ?2 ? m 得v ? ? 3.08km / s 2 r r r

(5)运行方向一定自西向东运行 人造天体在运动过程中的能量关系 当人造天体具有较大的动能时,它将上升到较高的轨道运动,而在较高轨道 上运动的人造天体却具有较小的动能。反之,如果人造天体在运动中动能减小, 它的轨道半径将减小, 在这一过程中, 因引力对其做正功, 故导致其动能将增大。 同 样 质 量 的卫 星 在 不同 高 度 轨 道上 的 机 械能 不 同 。 其中 卫 星 的动 能 为
EK ? GMm , 由于重力加速度 2r

g 随高度增大而减小,所以重力势能不能再用 Ek=mgh
GMm (以无穷远处引力势能为零,M 为地球质量,m r

计算,而要用到公式 E P ? ?

为卫星质量,r 为卫星轨道半径。由于从无穷远向地球移动过程中万有引力做正 GMm 功,所以系统势能减小,为负。 )因此机械能为 E ? ? 。同样质量的卫星, 2r 轨道半径越大,即离地面越高,卫星具有的机械能越大,发射越困难。 第六章:机械能 第一模块:功和功率 『夯实基础知识』 (一)功: 1、概念:一个物体受到力 的作用,并且在这个力 的方向上发生了一段位移, . . 就说这个力 对物体做了功。 . 2、做功的两个必要因素: 力和物体在力的方向上的位移 3、公式:W=FScosα 4、单位:焦耳(J) 5、意义:功是能转化的量度,反映力对空间的积累效果。 6、说明 (1)公式只适用于恒力做功 位移是指力的作用点通过位移 (2)要分清“谁做功,对谁做功”。即:哪个力对哪个物体做功。 (3)力和位移都是矢量:可以分解力也可以分解位移。如:位移:沿力方向分 解,与力垂直方向分解。 (α 为 F 与 s 的夹角) .功是力的空间积累效应。

(4)功是标量,没有方向,但功有正、负值。其正负表示力在做功过程中所起 的作用。 正功表示动力做功(此力对物体的运动有推动作用), 负功表示阻力做功. (5)功大小只与 F、s、α 这三个量有关.与物体是否还受其他力、物体运动 的速度、加速度等其他因素无关 (二)功的四个基本问题。 涉及到功的概念的基本问题,往往会从如下四个方面提出。 1、 做功与否的判断问题: 物体受到力的作用, 并在力的方向上通过一段位移, 我们就说这个力对物体做了功。由此看来,做功与否的判断,关键看功的两个必 要因素,第一是力;第二是力的方向上的位移。而所谓的“力的方向上的位移” 可作如下理解:当位移平行于力,则位移就是力的方向上的位的位移;当位移垂 直于力,则位移就不是力的方向上的位移;当位移与力既不垂直又不平行于力, 则可对位移进行正交分解, 其平行于力的方向上的分位移仍被称为力的方向上的 位移。 2、会判断正功、负功或不做功。判断方法有: (1)用力和位移的夹角 θ 判断; 当 0 ? ? ? 时 F 做正功,
2

?

当? 当
?
2

?

?
2

时 F 不做功,

?? ?? 时

F 做负功。

(2)用力和速度的夹角 θ 判断定; (3)用动能变化判断。 3、做功多少的计算问题: (1)按照定义求功。即:W=Fscosθ 。公式中 F 是做功的力;S 是 F 所作用 的物体发生的位移;而 θ 则是 F 与 S 间的夹角。这种方法也可以说成是:功等 于恒力和沿该恒力方向上的位移的乘积。 具体求功时可以有两种处理办法 ①W 等于力 F 乘以物体在力 F 方向上的分位移 scosα ,即将物体的位移分解 为沿 F 方向上和垂直 F 方向上的两个分位移 ②W 等于力 F 在位移 s 方向上的分力 Fcosα 乘以物体的位移 s,即将力 F 分 解为沿 s 方向和垂直 s 方向的两个分力 在高中阶段,这种方法只适用于恒力做功。至于变力做功的计算,通常可以 利用功能关系通过能量变化的计算来了解变力的功。 (2)W=Pt (3)用动能定理 W=Δ Ek 或功能关系求功。当 F 为变力时,高中阶段往往考 虑用这种方法求功。 这种方法的依据是: 做功的过程就是能量转化的过程,功是能的转化的量度。 如果知道某一过程中能量转化的数值, 那么也就知道了该过程中对应的功的数值 (4)能量的转化情况求, (功是能量转达化的量度)

(5)F-s 图象,图象与位移轴所围均“面积”为功的数值. (6)多个力的总功求解 ①用平行四边形定则求出合外力,再根据 w=Fscosα 计算功.注意 α 应是 合外力与位移 s 间的夹角. ②分别求各个外力的功:W1=F1 scosα 1, W2=F2scosα 2??再求各个外力功 的代数和. 4、做功意义的理解问题:做功意味着能量的转移与转化,做多少功,相应就 有多少能量发生转移或转化。 (三)了解常见力做功的特点: (1)一类是与势能相关的力,如重力、弹簧的弹力、电场力等,它们的功与 路程无关系,只与位移有关。 重力做功和路径无关,只与物体始末位置的高度差 h 有关:W=mgh,当末位置 低于初位置时,W>0,即重力做正功;反之则重力做负功。 (2)摩擦力做功 静摩擦力做功的特点 ①静摩擦力可以做正功,也可以做负功,还可以不做功。 ②在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力起着传递机 械能的作用) ,而没有机械能转化为其他形式的能. 滑动摩擦力做功的特点 ①滑动摩擦力可以对物体做正功,也可以对物体做负功,当然也可以不做功。 ②做功与物体的运动路径有关。滑动摩擦力做功要看物体运动的路程,这是 摩擦力做功的特点,必须牢记。 ③一对滑动摩擦力做功的过程中,如图所示,上面不光滑的长木板,放在光 滑的水平地面上,一小木块以速度 V0 从木板的左端滑上木板,当木块和木板相 对静止时,木板相对地面滑动了 S,小木块相对木板滑动了 d,则由动能定理知:

滑动摩擦力对木块所做功为:
?Ek木块 ? ? f (s ? d )

滑动摩擦力对木板所做功为:

?Ek木板 ? f ? s
得: ?Ek木板 ? ?Ek木块 ? ? f ? d 式表明木块和木板组成的系统的机械能的减少量等于滑动摩擦力与木块相对

木板的位移的乘积。这部分减少的能量转化为内能。 (3)一对作用力和反作用力做功的特点: ①作用力与反作用力同时存在,作用力做功时,反作用力可能做功,也可能 不做功,可能做正功,也可能做负功,不要以为作用力与反作用力大小相等、方 向相反,就一定有作用力、反作用力的功数值相等。 ②一对互为作用反作用的摩擦力做的总功可能为零 (静摩擦力) 、 可能为负 (滑 动摩擦力) ,但不可能为正 (3)斜面上支持力做功问题: ①斜面固定不动,物体沿斜面下滑时斜面对物体的支持力不做功 ②斜面置于光滑的水平面上,一个物体沿斜面下滑,物体受到的支持力对物 体做负功,如图所示,物体下滑到斜面底端,斜面由于不受地面摩擦,后退一段 距离,需要注意的是位移 S 是物体相对于地面的位移,不要认为是斜面,否则会 得出物体受到的支持力做功为 0 的错误结论。
F S Q P F


功率 1、功率的定义:功跟完成这些功所用时间的比值叫做功率,它表示物体做功 的快慢. 2、功率的定义式: P ? W ,所求出的功率是时间 t 内的平均功率。
t

3、功率的计算式:P=Fvcosθ ,其中 θ 是力与速度间的夹角。该公式有两种 用法: ①求某一时刻的瞬时功率。这时 F 是该时刻的作用力大小,v 取瞬时值,对 应的 P 为 F 在该时刻的瞬时功率; ②当 v 为某段位移(时间)内的平均速度时,则要求这段位移(时间)内 F 必须为恒力,对应的 P 为 F 在该段时间内的平均功率。 ③重力的功率可表示为 PG=mgVy,即重力的瞬时功率等于重力和物体在该时刻 的竖直分速度之积 4、单位:瓦(w) ,千瓦(kw) ; 5、标量 6、功率的物理意义:功率是描述做功快慢的物理量。 7、通常讲的汽车的功率是指汽车的牵引力的功率 P ? F牵v 二、汽车的两种起动问题 汽车的两种加速问题。当汽车从静止开始沿水平面加速运动时,有两种不同

的加速过程,但分析时采用的基本公式都是 P ? F牵v 和 F-f =ma ①恒定功率的加速。由公式 P=Fv 和 F-f=ma 知,由于 P 恒定,随着 v 的增大, F 必将减小,a 也必将减小,汽车做加速度不断减小的加速运动,直到 F=f,a=0, 这时 v 达到最大值 v m ? Pm ? Pm 。可见恒定功率的加速一定不是匀加速。这种加
F f

速过程发动机做的功只能用 W=Pt 计算,不能用 W=Fs 计算(因为 F 为变力) 。 ②恒定牵引力的加速。由公式 P=Fv 和 F-f=ma 知,由于 F 恒定,所以 a 恒定, 汽车做匀加速运动, 而随着 v 的增大, P 也将不断增大, 直到 P 达到额定功率 Pm,
P P 功率不能再增大了。这时匀加速运动结束,其最大速度为 vm ? ? m ? m ? vm ,此 F f

后汽车要想继续加速就只能做恒定功率的变加速运动了。 可见恒定牵引力的加速 时功率一定不恒定。 这种加速过程发动机做的功只能用 W=F?s 计算, 不能用 W=P?t 计算(因为 P 为变功率) 。 要注意两种加速运动过程的最大速度的区别。


相关文章:
高中物理必修2知识点归纳
高中物理必修二知识点总结第一模块:曲线运动、运动的合成和分解 <一> 曲线运动 1、定义:运动轨迹为曲线的运动。 2、物体做曲线运动的方向:做曲线运动的物体,速度...
高一物理必修2期中知识点复习总结
高一物理必修 2 期中知识点复习总结 1.曲线运动 1.曲线运动的特征 (1)曲线运动的轨迹是曲线。 (2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹...
高一物理必修2知识点总结归纳总复习提纲
高一物理必修2知识点总结归纳总复习提纲_高一理化生_理化生_高中教育_教育专区。...(3)分解原则:根据运动的实际效果分解,物体的实际运动为合运动. 3. ★★★平...
高中物理必修2知识点归纳及练习
物理必修 2 知识点总结 第五章 曲线运动一、曲线运动、运动合成和分解 ■考点一、曲线运动 1、定义:运动轨迹为曲线运动。 2、物体做曲线运动方向: 做...
高中物理必修二各章知识点及试卷含详细答案解析
高中物理必修二各章知识点及试卷含详细答案解析_理化生_高中教育_教育专区。一、选择题⒈“神舟五号”飞船在发射和返回的过程中,哪些阶段中返回舱的机械能是守恒的...
高中物理必修二2重难点知识归纳总结及典型题目解析
高中物理必修二2重难点知识归纳总结及典型题目解析_高二理化生_理化生_高中教育_...平抛运动中飞行时间仅由抛出点与落地点竖直高度来决定, 即 ,与 v0 无关...
高中化学必修2知识点归纳总结
高中化学必修2知识点归纳总结_理化生_高中教育_教育...最低的电子层里; ②各电子层最多 2 容纳的电子...4、水具有特殊的物理性质是由于水分子中存在一种被...
高中物理必修二2重难点知识归纳总结及典型题目解析
高中物理必修二2重难点知识归纳总结及典型题目解析_理化生_高中教育_教育专区。个性化...③宏观性:通常情况下,万有引力非常小,只在质量巨大天体间或天体与物体间...
高一物理必修2圆周运动复习知识点总结及经典例题详细剖析
高一物理必修2圆周运动复习知识点总结及经典例题详细剖析_理化生_高中教育_教育专区。各种圆周运动模型的详细讲解匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动...
必修2知识点归纳
必修2知识点归纳_政史地_高中教育_教育专区。落实基础,形成知识网络 高二生物必修 2 知识点复习第一章 一、基本概念 1、杂交: 2.自交: 不同基因型的生物间...
更多相关标签:
物理必修二知识点归纳 | 必修一物理详细知识点 | 必修二历史知识点归纳 | 数学必修四知识点归纳 | 数学必修一知识点归纳 | 必修三历史知识点归纳 | 化学必修二知识点归纳 | 必修三政治知识点归纳 |