当前位置:首页 >> 信息与通信 >>

TI


TI Battery Charger Overview

Agenda
? Li-Ion characteristics ? Battery Charger Design Consideration
Charging Process Safety and protection Power Path Management

/>? TI Battery Charger Portfolio

Introduction
? Lithium Ion (Li-Ion) still king
– – – – – Gravimetric density Volumetric density Low self-discharge No memory effect Environmentally friendly

Battery Chemical Capacity: Qmax
4.5

Voltage (V)

4.0 3.5 3.0 0

Open Circuit Voltage (OCV) Low C-rate: < 1/20C

EDV = 3.0 V/Cell
1 2 3 4 5 6

Capacity (Ah) C-Rate: ? Current to discharge a fully charged Battery to EDV in one hour Example:

Qmax

? 2200-mAh battery ? 1C discharge rate: 2200 mA, 1 hr ? 0.5C rate: 1100 mA, ~2 hrs

How Much Capacity is Really Available?
4.5

Open Circuit Voltage (OCV)
Voltage (V) 4.0 3.5 3.0 0 EDV 1 2 3 4 Capacity (Ah) 6

VBAT RBAT + CBAT - OCV

I × RBAT

Usable capacity – Quse Full chemical capacity – Qmax
? External battery voltage (blue curve) V = V0CV – I × RBAT ? Higher C-rate EDV is reached earlier (higher I × RBAT)

How Does Battery Impedance and Capacity Vary with Aging?
DC
Im (Z) - ? 0.08

Battery Voltage (V)

0.12

Battery Impedance with Aging

4.2 3.92 3.63 3.35 3.07 2.78 2.50 0 Cycle 100

Cycle 1

1 kHz
0.04

Cycle 100 Cycle 1

0 0.06 0.1 0.14

0.18 0.22 0.26 0.30 R(Z) - ?

20 40 60 80 Battery Capacity (%)

100

? Battery impedance increase with aging ? Impedance almost doubles after 100 cycles ? Double impedance results in 7% decrease in runtime

Impedance: Dependent on Temperature and State of Charge (SOC)
3 Impedance (?) (? 2 1 0 100
Lower Temperature

80

Fully Charged

60 40 SOC (%)

20

0

Fully Discharged

? Impedance = f(Temperature, SOC, and aging) ? SOC: State of charge

Charge Voltage Affects Battery Service Life
1100 1000 Cell Capacity (mAh) 900 800 700 600 500 400 4.35 V 0 100 200 300 400 Number of Cycles 4.3 V 4.25 V 500 600 4.2 V

? The higher the voltage, the higher the initial capacity ? Overcharging shortens battery cycle life
Source: “Factors that affect cycle-life and possible degradation mechanisms of a Li-Ion cell based on LiCoO2,” Journal of Power Sources 111 (2002) 130-136

Charge Current versus Battery Degradation
900 Cell Capacity (mAh) 800 700 600 500

1.0C 1.1C 1.3C 1.5C 2.0C
0 100 200 300 400 Number of Cycles 500 600

? Charge Current: Limited to 1C rate to prevent overheating that can accelerate degradation ? Some new cells can handle higher-rate
Source: “Factors that affect cycle-life and possible degradation mechanisms of a Li-Ion cell based on LiCoO2,” Journal of Power Sources 111 (2002) 130-136

Agenda
? Li-Ion characteristics ? Battery Charger Design Consideration Charging Process Safety and protection Power Path Management ? TI Battery Charger Portfolio

Li-Ion Charging: Special Requirements
Ambient Temperature of the Battery Pack During Charge 0°C to 45°C. Charging at higher temperature results in accelerated aging Low-Voltage Battery Pack Charge When the voltage per cell is less than 3V, charge using a charge current of 0.1 C rate or less. This is to provide recovery of passivity layer which might be dissolved after prolonged storage in discharged state. It also prevents overheating at 1C charge when partial Cu-deposition on anode shorted cells on over discharge. Termination of Charging The system will determine that the battery is full by detecting the charge current. Stop charging once the current has reached 1/10-1/20C rate. This value can vary between different manufacturers. Charge Timer A total charge timer and a charge completion timer should be included. Usually charging time can be limited to 3-5 hrs.

Li-Ion Battery CC-CV Charging Profile
VOREG (Prog) Precharge Constant Current Constant Voltage ICHARGE (PROG) Battery Voltage VLOWV 2-3 V Taper Current

IPrecharge 20-30% Time Precharge

ITERMINATION (Prog) 70-80% Time

Time

Fast Charge

New Charging Requirements for Portable Equipment
1C Max. Charging Current #1 0.5C #2 T1 T2 00C 100C T3 T4 T5 450C 500C 600C 4.25 V 4.15 V 4.10 V Max. Charging Voltage #2 #1 T1 T2 00C 100C T3 T4 T5 450C 500C 600C

Note: LiCoO2 Type Cell

? ?

Low charge current or voltage at low temperature Low charge voltage at high temperature

Safety
? High operating temperature
– Accelerates cell degradation – Thermal runaway and explosion Heat Flow (W/g)

OCV = 4.3 V Thermal Runaway

? LiCoO2 – Cathode reacts with electrolyte at 175°C with 4.3 V ? Cathode coatings help considerably ? LiFePO4 shows huge improvement! Thermal runaway is > 350°C

100 125 150 175 200 225 250 Temperature (°C) °

Pack Electronic Protection Requirements
The Basic 5
1. Overvoltage 2. Undervoltage 3. Overtemperature 4. Overcurrent 5. Cell Imbalance

Measure Everything
Voltage Temperature Impedance SOC Current

Input Current DPM Battery Charger
IIN
Q1
+

OUT A2
Q2

ISYS

ISYS2 ISYS1

DPM Mode
Adapter Limit

ICHG ISYS
BAT

Control Loops

IIN
ICHG1

IREF
+

ICHG

Input Current Regulation ICHG2
Time

VREF

OUT

? ? ? ?

Maximize use of the input current Current sharing between system & charger t1 Minimize the AC adapter size and power rating Constant output voltage: NO Audible Noise

t2

Charging with an Active System Load

+
Adapter or USB Charger

Ichg

Isys Ibat System

For standalone charger, Ichg = Ibat

For charger with a load, Charger output current is shared: Ichg = Ibat + Isys Design challenges: Timer fault Charger and system interaction Charge termination detection

Issue of Charger Design – System Load
Ichg Ibat ADP
Charger Li+

Isys
DCDC

Issue 1 : In Pre-Charge Mode – System steal input current, real current into battery (20mA) is lower than programmed (100mA) Ichg Isys 80mA – Result : Pre-charge timer expired 100mA Ibat – Solution : Keep system off in pre20mA charge mode

Issue 2 : In Fast-Charge Mode Ichg Isys – System steal input current, real current into battery (50mA) is lower than 750mA 700mA programmed (750mA) Ibat – Result : Fast charge timer expired, Fault LED indication 50mA – Solution : extend timer setting, but Isys change dynamicly in operation, not easy to implemented

Issue 3 : Charger Termination Mode – Isys > Iterm, Ichg never reach Iterm cause charger not terminated – Result : Fast charge timer expired, battery fault reported – Solution : disable timer or adjust Iterm level ITERM

ICHG=IBAT+ISYS IBAT ISYS
Time

Charger with Power Path Management
BQ2407x
Vsys
VDC GND Q1 D+ DVBUS GND PACKAC USB Q3 Q2 BAT PACK+ OUT System

Iin

Imax

Isys

Power Source Selection – System supply and Charging at the same time Isys + Ichg ≤ Imax – System supply and Charging at the same time – Ichg changed dynamically as Isys increase to maintain Iin ≤ Imax Isys > Imax – Vsys drop cause insufficient Iin to Isys – DPPM detect Vsys drop below threshold, Battery supply current as the Vsys drop to Vbat

Ichg

Agenda
? Li-Ion characteristics ? Battery Charger Design Consideration
Charging Process Safety and protection Power Path Management

? TI Battery Charge Portfolio

Linear vs. Switch-mode
AC Adapter IN OUT

bq24085

Advantage Few Extra components Low cost Easy Design Disadvantage Low Charge Current Low efficiency Thermal Issue Advantage
Very High Efficiency High Charge Current No Thermal Issue

Charger controller

Disadvantage
EMI Issue Design Skill

Battery Charger Solution by Equipment
Released, New and Planned Products
Mobile Phone Accessory MP3/MP4 Smartphone Gadget PND/MID pDVD UMPC Nettop PC Notebook Tablet Industrial Medical High-cell Charger Type

#

1 Li-Ion bq2430x bq2431x bq2438x bq24350 bq2408x bq2404x bq24210

1 Li-Ion bq243xx bq24070/1 bq2403x bq24072-75 bq2404x/5x bq2401x/6x bq24210 bq24150

1 Li-Ion bq243xx bq24070/1 bq2403x bq24072-75

2 Li-Ion bq2057W

2-3

3-4

1-4 1 cell: bq240xx 2 cells: bq2057W bq24004-6

4+

Linear Linear Internal FET Internal FET Switching with FET Switching external FET

bq24150 bq2460x/1x

bq2410x bq2412x

bq2410x bq2412x

Bq24765

1-3 cells: bq2410x bq2411x bq2412x bq2000/200x bq2954 bq2460x/1x bq2462x/3x bq24705 bq2474x/5x bq24721C bq2460x/1x bq2462x/3x

bq24705 bq24740 bq24741 bq24748 bq2475x SMBus: bq24721C bq24745

bq24705 bq24740 bq24741 bq24748 bq2475x bq24721C bq24725

Solar Cell Characteristics

Single Solar Cell RS D

VOC 0.6V

I-V Characteristic 0.35 - 0.5V Output Power

ISC

Overloading: ? Voltage Crash

Current

ISC

bq24210 – 800mA, Maximum Current Tracking 1-cell Li-Ion Linear Charger for Solar Power Applications
? ? ? ? ? ? ? ? ? ? ? Input Voltage Dynamic Power Management Feature (VIN_DPM) Programmable VIN DPM threshold to maximize the charge rate from the alternative power source, such as solar panel and inductive charging PAD. Reverse conduction mode to support load connected at VBUS pin 20V input rating, with Over-Voltage Protection (OVP) 1% Battery Regulation Accuracy Up to 800mA Charge Current with 10% Charge Current Accuracy Thermal Regulation Protection for Output Current Control Low Battery Leakage Current, OUT Short-Circuit Protection NTC Input Monitoring with LDO Mode Fixed 10 hour safety timer with disable control 10-pin 3mmx2mm SON package

Target Samples: Q3 ’10 RTM: Q1 ‘11

20V max, OVP @ 7.5V

Application--Solar Charger
100 – 800 mA Ichg Power Present Indication

Power Source or Load 7V 20V Reference for TS sensing
EN Pin
High—Suspend Mode Low—Charge/Reverse Conduction Mode (Auto Detection)

Input Voltage Regulation Threshold Programming
RDPM = 1K-10Kohm, VIN_DPM = 3.6-5V RDPM>500kohm, VIN_DPM=VTRK=VBAT+100mV

Pack Temperature Monitoring Charge Current Setting

bq24072/3/4/5/5T/9/9T: Mini-USB Friendly Single-Cell Li+
Charger w/ Dynamic Power Management
? Input current limiting: 100 or 500 mA for USB, user-programmable for non-USB applications ? Input-based Dynamic Power Management for Protection Against Poor USB Sources ? 28V max Vin with OVP, 1.5A max input and output currents, 1.2A max charge current ? Dynamic Power Management with integrated input and charge FETs ? 3x3 16pin QFN package
Mini-USB

? Support mini-USB interface ? Full USB compliance ? Protects against voltage transients and faulty inputs ? Maximize use of input power; save cost in AC adapters; allows instant turn-on ? Smallest integrated solution
IN OUT OUT BAT BAT

? Mobile Phones / Smartphones ? Portable Navigation Devices ? Portable Media Players
EN2 L L H H EN1 L H L H Input Current Max 100mA 500mA Set by resistor Standby / USB suspend

10?F

HOST

10?F EN2 EN1 TD /CE ISET ILIM TMR

Battery Pack
1?F

bq24072
TS CHG PGOOD VSS

EVM

bq2407xEVM

*The T versions have voltage based NTC thermister input.

bq24103A bqSWITCHER Sync. Switching Charger w/ Integrated FETs
? Integration: synchronous 1.1 MHz PWM controller, 2-A FET, reverse leakage protection, thermal shutdown, 3.5x4.5 mm2 QFN ? Battery Management: voltage and current regulation, charge conditioning, charge status, charge termination, safety timer, battery detection, battery temperature mintoring ? Vcc,max: 18V ? Minimum number of external components, small inductor, small solution size

? Maximizes battery capacity, cycle life and safety
Not Needed for bq24103A

? Portable DVD Players ? Portable Media Players ? Smart Handhelds ? Industrial and Medical Equipment
EVM

bq24103AEVM Nov 2007

bq24725 High Performance Charger + NMOS Power Path Selector
– Reliable Operation
? System, FETs, battery short protections ? Multiple voltage and current monitorings

– Minimum Change to Implement
? Use same/similar System Architecture ? Use same/similar SMBus control & BIOS

5x5-mm

– NMOS FET System Power Selector
? PMOS NMOS ? size and cost ? Adapter Side NMOS FETs - Charge Pump ? Battery Side NMOS FET - Charge Pump

– Smaller Charger IC Size
? Fewer Pins: 28pins 20pins ? QFN Package Smaller: 5x5-mm 3.5x3.5-mm

– Higher Switching Frequency:
? 400kHz, 800kHz, 1.1MHz, 1.6MHz ? EMI Fs Adjust: -20%, 0%, +20% ? Smaller Inductor Size 3.5x3.5-mm

High Performance Low Total Solution Cost Charger bq24725 (Sample: Now, Q3 RTM)
NMOS Power Selector
BAT
NMOS= cost saving by 20-40% then PMOS

Adapter VIN
R1 3.9 C1 0.22?F R2 430k R3 66.5k

Q1

Q2 RAC: 10m? ?
C2 0.1?F

R10: 4k

VIN

SYSTEM LOAD
R11 10

C6 2x10?F
C4 0.22?F

ACN ACP ACDRV

CMSRC PVCC BATDRV

Q5

R4: 4k

3.3V ALWAYS
Programmable Charge Current Limit R6
10k R7 10k R5 10k R8

ACDET

C5:1?F

REGN BTST

ACOK ILIM HIDRV

Q3

C6 10uF
L: 3.3?H R2 10m? ?

High switching frequency Smaller inductor

PACK+
C3 2x10?F

R9 C3 1?F

IOUT

PH LODRV GND SRP C7 0.1 F SRN

Q4

C4 0.1?F

HOST SMBus

SDA SCL

bq24725

? 3.5 x 3.5 mm QFN-20

Selectable Input/Charge Current Output


相关文章:
TI值
TI值_化学_自然科学_专业资料。由于施工及贮存的需要,往往将涂料制成触变性的非牛顿流体,其触变性大小由触变指 数 TI 值的大小来表示 ( 一般用最低转速下的...
TI官网购物详情
TI官网购物详情_互联网_IT/计算机_专业资料。尝试了一次终于知道TI官网购物的一些情况了,分享一下。1、 注册用户 2、 选择物品加入购物车 3、 Checkout,填写地址...
德州仪器(TI) 芯片的命名规则
DSF SDZ ZSV 无铅(Pb-free)徽标: 2004 年 6 月 1 日后,TI 开始提供无铅的集成电路 (IC) 组件,其采用符合美国电子器件工程联合委员 会 (JEDEC) 标准的包装...
德州仪器(TI)_芯片的命名规则
DSF SDZ ZSV 无铅(Pb-free)徽标: 2004 年 6 月 1 日后,TI 开始提供无铅的集成电路 (IC) 组件,其采用符合美国电子器件工程联合委员会 (JEDEC) 标准的包装 ...
ti公司三大DSP芯片的区别
ti公司三大DSP芯片的区别_计算机硬件及网络_IT/计算机_专业资料 暂无评价|0人阅读|0次下载|举报文档 ti公司三大DSP芯片的区别_计算机硬件及网络_IT/计算机_专业...
钛(Ti)
TiC 可以在变形过程中诱导析出,也会在轧后冷却的过程中析出,在 变形过程中析出的 TiC 颗粒作用同 Ti(CN)和 Ti4C2S2 类似,在层冷 及冷后卷取过程中析出的 ...
TI公司常用芯片
TI 的芯片型号很多,涉及的功能领域也很广,如 A/D 转换器(TLCTLV549(8 位)、TLV2543(12 位) 、 TLC7135 (12 位) ), D/A 转换器 (TLC5615、 TLV5620...
TI 常用运放芯片型号
[DATA]/TI[DATA] LM1458 双运算放大器 NS[DATA] LM148 四运算放大器 NS[DATA] LM224J 低功耗四运算放大器(工业档) NS[DATA]/TI[DATA] LM2902 四运算...
更多相关标签:
ti官网 | ti6 | tian | tia | ti元素 | t | ti5 | dota2 ti |