当前位置:首页 >> 数学 >>

等差数列前n项和公式


第 2 章 数 列 第2.3节等差数列前n项和公式 课前思考 进入新课 课堂练习 课后小结 课前思考 如图某校在一块长方形的地坪上铺设了灰、 绿两种花色的地砖 左侧铺了多少块灰色的地砖?可以用哪些 方法进行计算?计算中你能发现什么? 若将左侧所铺灰砖的总数记为 S10 右侧所铺灰砖的总数也是 S10 ,有 6 7 8 . . . 13 14 15 15

14 13 . . . 8 7 6 ① ② 返回主页 S10 ? 6 ? 7 ? 8 ? ?? 15 ? ? ? ? ? ? S10 ? 15 ? 14 ? 13 ? ?? 6? ? ? ? ? ? ① ?② 得 2 S10 ? (6 ? 15) ? (7 ? 14) ? ? ? (15 ? 6) ? (6 ? 15) ? 10 (6 ? 15 ) ? 10 ? S10 ? 2 ? 105(块) ? an ?, 能否用上面求和的方法 对一般的等差数列 来求 它的前n项和呢? 问题: Sn ? a1 ? (a1 ? d ) ? (a1 ? 2d ) ? ? ? ?a1 ? (n ? 1)d ? 将以上两式分别相加,得 Sn ? an ? (an ? d ) ? (an ? 2d ) ? ? ? ?an ? (n ? 1)d ? 2 Sn ? (a1 ? an ) ? (a1 ? an ) ? (a1 ? an ) ? ? ? (a1 ? an ) ? n(a1 ? an ) 由此得到等差数列的前 n项和公式: n(a1 ? an ) Sn ? 2 如果将通项公式 (Ι ) an ? a1 ? (n ? 1)d 代入上述公式的左边, 整理也可得: n( n ? 1) S n ? na1 ? d 2 (??) ? an ? 中 例 1 已知等差数列 ?1? a1 ? 6, ?2? a1 ? 5, S12 ? a12 ? ?24, 求S12 d ? 8, 求:S10 由等差数列求和公式 (1) ,得 解(1): 12?6 ? ?? 24?? 2 ? ?108 解(2): 由等差数列求和公式 (2) ,得 10 ( 10 ? 1 ) S10 ? 5 ? 10 ? ?8 2 ? 410 例 2 已知等差数列 ?an ?中,首项为 18 ,公差为? 6, 前n项和等于? 24,求项数n. 解 由题意知: a1 ? 18, d ? ?6, Sn ? ?24 代入等差数列求和公式 (2) ,得 化简可得: n(n ? 1) ? 24 ? 18n ? (?6) 2 2 n ? 7n ? 8 ? 0 n1 ? 8, n2 ? ?1(舍去) 所以项数 n = 8 例 3 已知等差数列中, a2 ? 1, S6 ? 24, 求S10 解 ? a2 ? a1 ? d , 6(6 ? 1) S6 ? 6a1 ? d 2 ? 6a1 ? 15d , ?a1 ? d ? 1 ?? ? 6a1 ? 15d ? 24 ?a1 ? ?1, 解方程组得: ? ? d ? 2. 10(10 ? 1) S10 ? ?1 ? 10 ? ? 2 ? 80 2 例 4 阳光剧场设置了20排座位,第一排有38个 座位,往后每一排都比前一排多2个座位, 这个剧场一共设置了多少个座位? 由题意知: 剧场从第一排起,每排的座位数组成的 数列为等差数列, 解 a1 ? 38, d ? 2, n ? 20, 求S20. 20(

相关文章:
《等差数列前n项和公式》教学设计
6.2.3《等差数列前 n 项和公式》教学设计 《等差数列前 n 项和公式》教学设计职业技术学校 刘老师 大纲分析: 高中数列研究的主要对象是等差、等比两个...
关于等差数列前n项和的两个公式的应用方法
关于等差数列前 n 项和的两个公式的应用方法 摘要:本文从在思想方法的角度给出了等差数列前 n 项和两个公式的侧重点。 关键词:等差数列 思想 前 n 项和公式...
等差数列前n项和公式的几个性质和与应用
等差数列前 n 项和公式的几个性质和与应用河北 张根全 等差数列是高中数学的一项重要内容, 其中心是通项公式与前 n 项和公式。 透彻理解并 掌握他们的相关性,...
《等差数列的前n项和公式》教学设计
《等差数列的前n项和公式》教学设计_工学_高等教育_教育专区。1、知识目标 (1)掌握等差数列前n项和公式,理解公式的推导方法; (2)能较熟练应用等差数列前n项和...
数列前n项和的求和公式
? ?, n ,? ? ? 前 n 项的和. 2 2 2 2 三、倒序相加法求和 这是推导等差数列前 n 项和公式时所用的方法,就是将一个数列倒过来排列(反序) ,再...
等差等比数列通项及前N项和公式
等差等比数列通项及前N项和公式_理学_高等教育_教育专区 暂无评价|0人阅读|0次下载|举报文档 等差等比数列通项及前N项和公式_理学_高等教育_教育专区。数列通...
等差数列前n项和公式导学案(一)
an ? 的前 n 项和 sn ,公差 d 。 二、公式基本应用 例 1:(1)求等差数列-10,-6,-2,2,?前 10 项的和。 (2)等差数列-10,-6,-2,2,?前多少项...
求数列通项公式及前n项和常见方法
于已知数列类型 的题目. 例 1.等差数列 {a n } 是递增数列,前 n 项和为 Sn ,且 数列 {a n } 的通项公式 2 a 1 , a 3 , a 9 成等比数列,S5...
等差数列及其前n项和 经典习题
n-1? 若已知首项 a1 和公差 d,则其前 n 项和公式为 Sn=na1+ d. 2 例 2:(2011· 福建)在等差数列{an}中,a1=1,a3=-3. (1)求数列{an}的通项...
《等差数列前n项和公式》说课稿
6《等差数列前 n 项和公式》说课稿 《等差数列前 n 项和公式》说课稿各位评委,大家好: 我说课的课题是高中数学(人教 B 版)必修 5 第二章等差数列中“等差...
更多相关标签: