当前位置:首页 >> 数学 >>

抽样方法


第十一章 统计与概率
【知识图解】 统计 总体 抽样

分析

估计

简 单 随 机 抽 样

系 统 抽 样

分 层 抽 样

样 本 分 布

样 本 特 征 数

相 关 系 数

总 体 分 布

总 体 特 征 数

相 关 系 数

概率分布 独立性 必然事件 概 率 随机事件 不可能事件 随机变量 数字特征 随机现象

条件概率 事件独立性 高考数学 期望 方 差 古典概型

概 率



用 几何概型

概率

等可能事件

互斥、对立事件

【方法点拨】 1、 准确理解公式和区分各种不同的概念 正确使用概率的加法公式与乘法公式、随机变量的高考数学期望与方差的计算公式.注 意事件的独立性与互斥性是两个不同的概念,古典概型与几何概型都是等可能事件,对 立事件一定是互斥事件,反之却未必成立. 2、 掌握抽象的方法 抽象分为简单的随机抽样、系统抽样、分层抽样.系统抽样适用于总体较多情况,分层 抽样适用于总体由几个差异明显的部分组成的情况. 3、 学会利用样本和样本的特征数去估计总体 会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,并体会它们各自特点, 特别注意频率分布直方图的纵坐标为频率/组距;会计算样本数据平均数、方差(标准 差) ,利用样本的平均数可以估计总体的平均数,利用样本的方差估计总体的稳定程度. 4、 关于线性回归方程的学习 在线性相关程度进行校验的基础上,建立线性回归分析的基本算法步骤.学会利用线性 回归的方法和最小二乘法研究回归现象,得到的线性回归方程(不要求记忆系数公式) 可用于预测和估计,为决策提供依据.

第 1 课 抽样方法
【考点导读】 1. 抽样方法分为简单随机抽样、系统抽样、分层抽样. 2 .系统抽样适用于总体个数较多情况,分层抽样适用于总体由几个差异明显的部分组成的 情况. 【基础练习】 1.为了了解全校 900 名高一学生的身高情况,从中抽取 90 名学生进行测量,下列说法正确 的是 ④ . ①总体是 900 ②个体是每个学生 ③样本是 90 名学生 ④样本容量是 90 2.对总数为 N 的一批零件抽取一个容量为 30 的样本,若每个零件被抽到的概率为 0.25, 则 N 的值为 120 . 3.高三年级有 12 个班,每班 50 人按 1—50 排学号,为了交流学习经验,要求每班学号为 18 的同学留下进行交流,这里运用的是 系统 抽样法. 4.某校有学生 2000 人,其中高三学生 500 人.为了解学生身体情况,采用按年级分层抽样 的方法,从该校学生中抽取一个 200 人的样本,则样本中高三学生的人数为 50 5.将参加高考数学竞赛的 1000 名学生编号如下:0001,0002,0003,…,1000,打算从中 抽取一个容量为 50 的样本,按系统抽样的方法分成 50 个部分,如果第一部分编号为 0001, 0002, 0003, …, 0020, 第一部分随机抽取一个号码为 0015, 则抽取的第 40 个号码为 0795 .

【范例解析】 例 1:某车间工人加工一种轴 100 件,为了了解这种轴的直径,要从中抽取 10 件轴在同一 条件下测量,如何采用简单随机抽样的方法抽取样本? 分析 简单随机抽样一般采用两种方法:抽签法和随机数表法. 解法 1: (抽签法)将 100 件轴编号为 1,2,…,100,并做好大小、形状相同的号签,分别 写上这 100 个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取 10 个号签,然后测 量这个 10 个号签对应的轴的直径. 解法 2: (随机数表法)将 100 件轴编号为 00,01,…99,在随机数表中选定一个起始位置, 如取第 21 行第 1 个数开始,选取 10 个为 68,34,30,13,70,55,74,77,40,44,这 10 件即为所要抽取的样本. 点评 从以上两种方法可以看出,当总体个数较少时用两种方法都可以,当样本总数较多 时,方法 2 优于方法 1. 例 2、某校高中三年级的 295 名学生已经编号为 1,2,……,295,为了了解学生的学习情 况,要按 1:5 的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程. 分析 按 1:5 分段,每段 5 人,共分 59 段,每段抽取一人,关键是确定第 1 段的编号. 解:按照 1:5 的比例,应该抽取的样本容量为 295÷5=59,我们把 259 名同学分成 59 组, 每组 5 人,第一组是编号为 1~5 的 5 名学生,第 2 组是编号为 6~10 的 5 名学生,依次下 去,59 组是编号为 291~295 的 5 名学生.采用简单随机抽样的方法,从第一组 5 名学生中 抽出一名学生, 不妨设编号为 k(1≤k≤5), 那么抽取的学生编号为 k+5L(L=0,1,2,……, 58), 得到 59 个个体作为样本,如当 k=3 时的样本编号为 3,8,13,……,288,293. 点评 系统抽样可按事先规定的规则抽取样本 . 本题采用的规则是第一组随机抽取的学生

编号为 k,那么第 m 组抽取的学生编号为 k+5(m-1). 例 3:一个地区共有 5 个乡镇,人口 3 万人,其中人口比例为 3:2:5:2:3,从 3 万人中 抽取一个 300 人的样本, 分析某种疾病的发病率, 已知这种疾病与不同的地理位置及水土有 关,问应采取什么样的方法?并写出具体过程. 分析 采用分层抽样的方法. 解:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分 层抽样的方法,具体过程如下: (1)将 3 万人分为 5 层,其中一个乡镇为一层. (2)按照样本容量的比例随机抽取各乡镇应抽取的样本. 300×3/15=60(人) ,300×2/15=40(人) ,300×5/15=100(人) ,300×2/15=40(人) ,300 ×3/15=60(人) ,因此各乡镇抽取人数分别为 60 人、40 人、100 人、40 人、60 人. (3)将 300 人组到一起,即得到一个样本. 点评 分层抽样在日常生活中应用广泛, 其抽取样本的步骤尤为重要, 应牢记按照相应的比 例去抽取. 【反馈演练】 1. 一个总体中共有 200 个个体, 用简单随机抽样的方法从中抽取一个容量为 20 的样本, 则 某一特定个体被抽到的可能性是 0.1 . 2.为了了解参加运动会的 2000 名运动员的年龄情况,从中抽取 100 名运动员;就这个问 题,下列说法中正确的有 2 个.

①2000 名运动员是总体;②每个运动员是个体;③所抽取的 100 名运动员是一个样本; ④样本容量为 100;⑤这个抽样方法可采用按年龄进行分层抽样;⑥每个运动员被抽到的概 率相等. 3.对于简单随机抽样,下列说法中正确的命题为 ①②③④ . ①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概率进行分析;② 它是从总体中逐个地进行抽取,以便在抽取实践中进行操作;③它是一种不放回抽样;④ 它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等, 而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种方法抽样的公平 性. 4.某公司甲、乙、丙、丁四个地区分别有 150 个、120 个、180 个、150 个销售点.公司为 了调查销售的情况, 需从这 600 个销售点中抽取一个容量为 100 的样本, 记这项调查为①; 在丙地区中有 20 个特大型销售点, 要从中抽取 7 个调查其收入和售后服务等情况, 记这项 调查为②.则完成①、②这两项调查宜采用的抽样方法依次是 分层抽样法,简单随机 抽样法 . 5.下列抽样中不是系统抽样的是 ③ . ①.从标有 1~15 号的 15 个球中,任选三个作样本,按从小号到大号排序,随机选起点 i0 , 以后 i0 ? 5 , i0 ? 10 (超过 15 则从 1 再数起)号入样; ②.工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽 一件产品进行检验; ③.搞某一市场调查,规定在商场门口随机抽一个人进行询问调查,直到调查到事先规定的 人数为止; ④.电影院调查观众的某一指标,通知每排(每排人数相同)座位号为 14 的观众留下座谈. 6. 为了解初一学生的身体发育情况, 打算在初一年级 10 个班的某两个班按男女生比例抽取 样本,正确的 抽样方法是 ③ . ①随机抽样 ②分层抽样 ③先用抽签法,再用分层抽样 ④先用分层抽样,再用随机 数表法 7.写出下列各题的抽样过程 (1)请从拥有 500 个分数的总体中用简单随机抽样方法抽取一个容量为 30 的样本. (2)某车间有 189 名职工,现在要按 1:21 的比例选派质量检查员,采用系统抽样的方式进 行. (3)一个电视台在因特网上就观众对某一节目喜爱的程度进行调查,参加调查的总人数为 12000 人,其中持各种态度的人数如下: 很喜爱 喜爱 一般 不喜爱 2435 4567 3926 1072 打算从中抽取 60 人进行详细调查,如何抽取? 解:(1)①将总体的 500 个分数从 001 开始编号,一直到 500 号; ②从随机数表第 1 页第 0 行第 2 至第 4 列的 758 号开始使用该表; ③抄录入样号码如下:335、044、386、446、027、420、045、094、382、5215、342、148、 407、349、322、027、002、323、141、052、177、001、456、491、261、036、240、115、 143、402 ④按以上编号从总体至将相应的分数提取出来组成样本,抽样完毕 (2)采取系统抽样 189÷21=9,所以将 189 人分成 9 组,每组 21 人,在每一组中随机抽 取 1 人,这 9 人组成样本 (3)采取分层抽样 总人数为 12000 人,12000÷60=200,
王新敞
奎屯 新疆

王新敞
奎屯

新疆

王新敞
奎屯

新疆

2345 4567 3926 1072 ? 11?145人, =22?167人, = 19?余126 , =5?余72人 200 200 200 200
所以从很喜爱的人中剔除 145 人,再抽取 11 人;从喜爱的人中剔除 167 人,再抽取 22 人; 从一般喜爱 的人中剔除 126 人,再抽取 19 人;从不喜爱的人中剔除 72 人,再抽取 5 人
王新敞
奎屯 新疆


相关文章:
抽样方法
3页 免费 三种抽样方法 17页 2财富值 抽样方法2 15页 免费如要投诉违规内容,请到百度文库投诉中心;如要提出功能问题或意见建议,请点击此处进行反馈。 ...
抽样方法资料
抽样方法资料_企业管理_经管营销_专业资料。第一章 抽样检验 d 样本中不合格品数 1 抽样检验的基础知识 计算方法 1)超几何分布:适用批量较小计件抽检 ? Np ?...
抽样方法和技巧
抽样方法和技巧_生产/经营管理_经管营销_专业资料 暂无评价|0人阅读|0次下载|举报文档 抽样方法和技巧_生产/经营管理_经管营销_专业资料。抽样方法和技巧的WORD版...
抽样方法的比较与应用
抽样方法的比较与应用彭兴俊 江苏省大丰高级中学 224100 统计的基本思想方法是用样本估计总体,即当总体容量很大或检测过程具有一定的破坏 性时,不直接去研究总体,...
监督抽查抽样方法(整理稿)
5.2 抽样方法、基数及数量 在企业的成品库内或市场随机抽取经企业检验合格或以任何方式表明合格的产品, 所抽 取产品的保质期应能满足检验工作的进行。 在企业...
重要抽样方法
重要抽样方法_机械/仪表_工程科技_专业资料。重要抽样方法 直接蒙特卡罗方法用于估计结构的失效概率,通用性强,简单直观,但计算 效率很低, 为了达到一定的模拟精度, ...
ICMSF-抽样方法
三种抽样方法(全) 28页 1下载券 三种抽样方法 17页 1下载券 §2 抽样方法 ...ICMSF 推荐的抽样方案 ICMSF 提出的采样基本原则,是根据(1)各种微生物本身对人...
抽样方法教案
个性化教案 抽样方法适用学科 适用区域 知识点数学 新课标 简单随机抽样及其优缺点 抽签法和随机数法 系统抽样及其优缺点 系统抽样的方法及适用对象 分层抽样及其优...
常见的概率抽样方法
常见的概率抽样方法来源:网站数据分析 抽样方法简单的可分为概率抽样和非概率抽样,概率抽样常见的方法包括简单随机 抽样、分层抽样、系统抽样和整群抽样。简单随机抽样...
抽样方法
抽样方法_机械/仪表_工程科技_专业资料。抽样方法 质量管理——抽样方法 Page 1 of 17 抽样方法 产品质量检验通常可分成全数检验和抽样检验两种方法。 全数检验是...
更多相关标签: