当前位置:首页 >> 能源/化工 >>

Advanced Statistics with Matlab


Tutorial 5: Advanced Statistics with Matlab

Page 1 of 5

04/22/2004

Tutorial 5? : Advanced Statistics with MATLAB
Daniela Raicu draicu@cs.depaul.edu School of Computer Science, Telecommunications, and Information Systems DePaul University, Chicago, IL 60604
The purpose of this tutorial is to present several advanced statistics techniques using Matlab Statistics toolbox. For this tutorial, we assume that you know the basics of Matlab (covered in Tutorial 1) and the basic statistics functions implemented in Matlab. If you need to refresh your Matlab skills, then a good starting point is to read and solve the exercises from Tutorial #1 (Introduction to Matlab) and Tutorial #3 (Statistics with matlab). The tutorial purpose is to teach you how to use several Matlab built-in functions to calculate advanced statistics for different data sets in different applications; the tutorial is intended for users running a professional version of MATLAB 6.5, Release 13. Topics discussed in this tutorial include: 1. 2. 3. 4. Covariance matrices and Eigenvalues Principal component analysis Canonical Correlation Polynomial fit for a set of points

1. Covariance matrices and Eigenvalues Covariance matrix from raw data “cov.m” ? X = [1 1 2 3;7 8 9 7;1 3 2 1;10 9 11 9;2 2 1 1; 3 4 1 2] X = 1 7 1 10 2 3 ? cov(X) ans = 13.6000 11.6000 15.6000 11.8000
?

1 8 3 9 2 4

2 9 2 11 1 1

3 7 1 9 1 2

11.6000 10.7000 13.6000 9.9000

15.6000 13.6000 19.8667 14.6667

11.8000 9.9000 14.6667 11.3667

Event Sponsor: Visual Computing Area Curriculum Quality of Instruction Council (QIC) grant

Tutorial 5: Advanced Statistics with Matlab

Page 2 of 5

04/22/2004

? cov(X(:,1)) ans = 13.6000 ? cov(X(:,2)) ans = 10.7000 Eigenvalues from raw data “eig.m” ? eig(cov(X)) ans = 0.5731 0.1590 1.4018 %second largest eigenvalue that captures the second largest variance 53.3994 %largest eigenvalue that captures the largest variance in the data 2. Principal Component Analysis components analysis from raw data: “princomp.m”: takes a data matrix X and returns the principal components in PC, the socalled Z-scores in SCORES, the eigenvalues of the covariance matrix of X in LATENT, and Hotelling's T-squared statistic for each data point in TSQUARE. Principal

? [pc, score, latent, tsquare] = princomp(X) pc = 0.4961 0.4316 0.6032 0.4514 -0.3697 -0.6706 0.4179 0.4889 0.6397 -0.4003 -0.5296 0.3874 -0.4561 0.4515 -0.4254 0.6381

score = -4.7824 7.2433 -4.8221 11.2723 -5.3608 -3.5502 2.0736 0.0423 -0.2454 0.0763 -0.3624 -1.5843 0.3947 -0.7265 -1.1806 0.5080 0.3889 0.6155 0.2489 0.2473 -0.1243 -0.2441 -0.6064 0.4786

latent =

Tutorial 5: Advanced Statistics with Matlab

Page 3 of 5

04/22/2004

53.3994 1.4018 0.5731 0.1590

tsquare = 4.1571 2.2893 3.0077 3.2088 3.2088 4.1284

3. Canonical Correlation Canonical correlation analysis for two types of attributes: “Canoncorr.m” [A,B,R,U,V] = CANONCORR(X,Y) computes the sample canonical coefficients for the N-by-D1 and N-by-D2 data matrices X and Y. X and Y must have the same number of observations (rows) but can have different numbers of variables (cols). The jth columns of A and B contain the canonical coefficients, i.e. the linear combination of variables making up the jth canonical variable for X and Y, respectively. Columns of A and B are scaled to make COV(U) and COV(V) (see below) the identity matrix. R containing the sample canonical correlations; the jth element of R is the correlation between the jth columns of U and V (see below), the canonical variables computed as U = (X - repmat(mean(X),N,1))*A and V = (Y - repmat(mean(Y),N,1))*B. Example: load carbig; X = [Displacement Horsepower Weight Acceleration MPG]; nans = sum(isnan(X),2) > 0; [A B r U V] = canoncorr(X(~nans,1:3), X(~nans,4:5)); plot(U(:,1),V(:,1),'.'); xlabel('0.0025*Disp + 0.020*HP - 0.000025*Wgt'); ylabel('-0.17*Accel + -0.092*MPG')

>> A A = 0.0025 0.0202 -0.0000 >> size(X) ans = 0.0048 0.0409 -0.0027

Tutorial 5: Advanced Statistics with Matlab

Page 4 of 5

04/22/2004

406 >> B B = -0.1666 -0.0916 >> r r = 0.8782

5

-0.3637 0.1078

0.6328

4. >> Y =

Polynomial fitting

1 7 1 10 2 3 2

1 8 3 9 2 4 3

Tutorial 5: Advanced Statistics with Matlab

Page 5 of 5

04/22/2004

6

6

? plot(Y(:,2),Y(:,1),'+')

Fit polynomial to data: “polyfit.m”: [P, S] = POLYFIT(X, Y, N) returns the polynomial coefficients P and a structure S for use with POLYVAL to obtain error estimates on predictions. >>[P,S]=polyfit(Y(:,1),Y(:,2),2) P = -0.0309 S = R: [3x3 double] df: 5 normr: 1.9199 Evaluate polynomial: “polyval.m” Y = POLYVAL(P,X), when P is a vector of length N+1 whose elements are the coefficients of a polynomial, is the value of the polynomial evaluated at X. 1.1623 0.6383

Y = P(1)*X^N + P(2)*X^(N-1) + ... + P(N)*X + P(N+1)

If X is a matrix or vector, the polynomial is evaluated at all points in X. See also POLYVALM for evaluation in a matrix sense. [Y, DELTA] = POLYVAL (P,X,S) uses the optional output structure generated by POLYFIT to generate error estimates, Y +/- delta.

>> Y_new=polyval(P,Y(:,1))

Y_new =

1.7697 7.2612 1.7697 9.1731 2.8394 3.8473 2.8394 6.5004 >> plot(Y(:,2),Y(:,1),'*',Y_new(:,1),Y(:,1),'+')


相关文章:
MATLAB原理及应用(10课堂版)
统计工具箱(Statistics Toolbox) 4 MATLAB 基础及应用 1.3 基础准备及入门 1.3.1 安装原则:自由选择。 (完全安装,约 1.6G) 1.3.2 启动后缺省界面 5 ...
Matlab基础教程
Statistics 非线性控制 统计 §1.2 Matlab 基本用法从 Windows 中双击 Matlab 图标,会出现 Matlab 命令窗口(Command Window) ,在一 段提示信息后,出现系统提示符...
武汉理工大学MATLAB课程设计
The main difference I have introduced in advanced mathematics matlab computer ... histogram statistics and histogram equalization, and join all noises, use a...
金工Tier 1学校的项目信息(世毕盟留学)
numerical analysis and advanced statistics and probability (see our ...Experience with mathematical tools (Example: Matlab) ? ? Experience with ...
Matlab3
Statistics 非线性控制 统计 §1.2 Matlab 基本用法从 Windows 中双击 Matlab 图标,会出现 Matlab 命令窗口(Command Window) ,在一 段提示信息后,出现系统提示符...
MATLAB基础及统计应用课程-- 数据的预处理免费学习_其...
本课程为MATLAB基础及统计应用课程,提供了对 MATLAB基本操作和Statistics Toolbox(统计工具箱)中的统计工具的全面介绍。本课程适用于MATLAB零基础的初级用户以及希望对...
MATLAB中文手册
统计工具箱(Statistics Toolbox) 1.1.2 MATLAB 功能和特点 1.功能强大 (1) 运算功能强大 ? MATLAB 的数值运算要素不是单个数据,而是矩阵,每个元素都可看作复数...
matlab集锦
Q2:matlab 中如何做回归分析? A: Statistics Toolbox。 Q3:已知两个正态分布的均值和方差,matlab 里有什么函数可以直接求出来? A: 用 fminsearch 函数。 Q4:...
Matlab常见问题集
1363 精华 35 积分 5559 威望 100 金钱 837 分 贡献 324 金币 3262 元 A: Statistics Toolbox. Q3:已知两个正态分布的均值和方差,matlab 里有什么函数可以直...
Matlab基础入门教程
Statistics 非线性控制 统计 §1.2 Matlab 基本用法从 Windows 中双击 Matlab 图标,会出现 Matlab 命令窗口(Command Window) ,在一 段提示信息后,出现系统提示符...
更多相关标签: