当前位置:首页 >> 能源/化工 >>

Advanced Statistics with Matlab


Tutorial 5: Advanced Statistics with Matlab

Page 1 of 5

04/22/2004

Tutorial 5? : Advanced Statistics with MATLAB
Daniela Raicu draicu@cs.depaul.edu Schoo

l of Computer Science, Telecommunications, and Information Systems DePaul University, Chicago, IL 60604
The purpose of this tutorial is to present several advanced statistics techniques using Matlab Statistics toolbox. For this tutorial, we assume that you know the basics of Matlab (covered in Tutorial 1) and the basic statistics functions implemented in Matlab. If you need to refresh your Matlab skills, then a good starting point is to read and solve the exercises from Tutorial #1 (Introduction to Matlab) and Tutorial #3 (Statistics with matlab). The tutorial purpose is to teach you how to use several Matlab built-in functions to calculate advanced statistics for different data sets in different applications; the tutorial is intended for users running a professional version of MATLAB 6.5, Release 13. Topics discussed in this tutorial include: 1. 2. 3. 4. Covariance matrices and Eigenvalues Principal component analysis Canonical Correlation Polynomial fit for a set of points

1. Covariance matrices and Eigenvalues Covariance matrix from raw data “cov.m” ? X = [1 1 2 3;7 8 9 7;1 3 2 1;10 9 11 9;2 2 1 1; 3 4 1 2] X = 1 7 1 10 2 3 ? cov(X) ans = 13.6000 11.6000 15.6000 11.8000
?

1 8 3 9 2 4

2 9 2 11 1 1

3 7 1 9 1 2

11.6000 10.7000 13.6000 9.9000

15.6000 13.6000 19.8667 14.6667

11.8000 9.9000 14.6667 11.3667

Event Sponsor: Visual Computing Area Curriculum Quality of Instruction Council (QIC) grant

Tutorial 5: Advanced Statistics with Matlab

Page 2 of 5

04/22/2004

? cov(X(:,1)) ans = 13.6000 ? cov(X(:,2)) ans = 10.7000 Eigenvalues from raw data “eig.m” ? eig(cov(X)) ans = 0.5731 0.1590 1.4018 %second largest eigenvalue that captures the second largest variance 53.3994 %largest eigenvalue that captures the largest variance in the data 2. Principal Component Analysis components analysis from raw data: “princomp.m”: takes a data matrix X and returns the principal components in PC, the socalled Z-scores in SCORES, the eigenvalues of the covariance matrix of X in LATENT, and Hotelling's T-squared statistic for each data point in TSQUARE. Principal

? [pc, score, latent, tsquare] = princomp(X) pc = 0.4961 0.4316 0.6032 0.4514 -0.3697 -0.6706 0.4179 0.4889 0.6397 -0.4003 -0.5296 0.3874 -0.4561 0.4515 -0.4254 0.6381

score = -4.7824 7.2433 -4.8221 11.2723 -5.3608 -3.5502 2.0736 0.0423 -0.2454 0.0763 -0.3624 -1.5843 0.3947 -0.7265 -1.1806 0.5080 0.3889 0.6155 0.2489 0.2473 -0.1243 -0.2441 -0.6064 0.4786

latent =

Tutorial 5: Advanced Statistics with Matlab

Page 3 of 5

04/22/2004

53.3994 1.4018 0.5731 0.1590

tsquare = 4.1571 2.2893 3.0077 3.2088 3.2088 4.1284

3. Canonical Correlation Canonical correlation analysis for two types of attributes: “Canoncorr.m” [A,B,R,U,V] = CANONCORR(X,Y) computes the sample canonical coefficients for the N-by-D1 and N-by-D2 data matrices X and Y. X and Y must have the same number of observations (rows) but can have different numbers of variables (cols). The jth columns of A and B contain the canonical coefficients, i.e. the linear combination of variables making up the jth canonical variable for X and Y, respectively. Columns of A and B are scaled to make COV(U) and COV(V) (see below) the identity matrix. R containing the sample canonical correlations; the jth element of R is the correlation between the jth columns of U and V (see below), the canonical variables computed as U = (X - repmat(mean(X),N,1))*A and V = (Y - repmat(mean(Y),N,1))*B. Example: load carbig; X = [Displacement Horsepower Weight Acceleration MPG]; nans = sum(isnan(X),2) > 0; [A B r U V] = canoncorr(X(~nans,1:3), X(~nans,4:5)); plot(U(:,1),V(:,1),'.'); xlabel('0.0025*Disp + 0.020*HP - 0.000025*Wgt'); ylabel('-0.17*Accel + -0.092*MPG')

>> A A = 0.0025 0.0202 -0.0000 >> size(X) ans = 0.0048 0.0409 -0.0027

Tutorial 5: Advanced Statistics with Matlab

Page 4 of 5

04/22/2004

406 >> B B = -0.1666 -0.0916 >> r r = 0.8782

5

-0.3637 0.1078

0.6328

4. >> Y =

Polynomial fitting

1 7 1 10 2 3 2

1 8 3 9 2 4 3

Tutorial 5: Advanced Statistics with Matlab

Page 5 of 5

04/22/2004

6

6

? plot(Y(:,2),Y(:,1),'+')

Fit polynomial to data: “polyfit.m”: [P, S] = POLYFIT(X, Y, N) returns the polynomial coefficients P and a structure S for use with POLYVAL to obtain error estimates on predictions. >>[P,S]=polyfit(Y(:,1),Y(:,2),2) P = -0.0309 S = R: [3x3 double] df: 5 normr: 1.9199 Evaluate polynomial: “polyval.m” Y = POLYVAL(P,X), when P is a vector of length N+1 whose elements are the coefficients of a polynomial, is the value of the polynomial evaluated at X. 1.1623 0.6383

Y = P(1)*X^N + P(2)*X^(N-1) + ... + P(N)*X + P(N+1)

If X is a matrix or vector, the polynomial is evaluated at all points in X. See also POLYVALM for evaluation in a matrix sense. [Y, DELTA] = POLYVAL (P,X,S) uses the optional output structure generated by POLYFIT to generate error estimates, Y +/- delta.

>> Y_new=polyval(P,Y(:,1))

Y_new =

1.7697 7.2612 1.7697 9.1731 2.8394 3.8473 2.8394 6.5004 >> plot(Y(:,2),Y(:,1),'*',Y_new(:,1),Y(:,1),'+')


相关文章:
MATLAB工具箱安装系统平台需求
? ? Requires MATLAB RF Toolbox recommended Phased Array System Toolbox recommended Bioinformatics ? Toolbox Requires MATLAB Requires Statistics and Machine ...
Matlab各工具箱功能简介(部分)
Matlab各工具箱功能简介(部分)_计算机软件及应用_IT/计算机_专业资料。Toolbox ...对于分析多维数据,Statistics and Machine Learning Toolbox 可让您通过序列特征...
Matlab金融分析视频地址
MATLAB and Statistics 、 Toolboxnew http://www.mathworks.cn/webex/recordings/dataedu_101408/index.html 16、Speeding up MATLAB Applications 、 http://www...
matlab 统计工具箱函数
matlab 统计工具箱函数_数学_自然科学_专业资料。matlab 统计工具箱函数 % Statistics Toolbox % betafit - Beta parameter estimation. % binofit - Binomial ...
MATLAB Toolbox 说明
*Statistics Toolbox *StatisticsToolbox *Symbolic Math Toolbox 模块说明 把 MATLAB 的 M 文件编译成 DLL 文件,或 EXE 独立应用程序 MATLABC/C++图形库 MATLABC/...
第1章MATLAB基础
第1章MATLAB基础_计算机软件及应用_IT/计算机_专业资料。前言 MATLAB,全名 ...(Spline)、μ 分析和综合(μ -Analysis and Synthesis)、统计分析(Statistics) ...
Matlab使用方法和简介
Statistics 非线性控制 统计 §1.2 Matlab 基本用法从 Windows 中双击 Matlab 图标,会出现 Matlab 命令窗口(Command Window),在一 段提示信息后,出现系统提示符“...
MATLAB
Statistics Toolbox——统计工具箱 Symbolic Math Toolbox——符号数学工具箱 Simulink Toolbox——动态仿真工具箱 Wavele Toolbox——小波工具箱 常用函数 Matlab 内部...
Matlab功能应用介绍
Statistics 非线性控制 统计 §1.2 Matlab 基本用法从 Windows 中双击 Matlab 图标,会出现 Matlab 命令窗口(Command Window) ,在一 段提示信息后,出现系统提示符...
matlab命令集锦
0.9772 0.4232 0.4335 0.4405 0.4457 1 2 matlab 命令 1. 熟悉数学软件 MatLabStatistics 工具箱里的各种密度函数和分布函数的作图命令并观 看各种...
更多相关标签: