当前位置:首页 >> 能源/化工 >>

页岩气开发现状评价技术及中国页岩气潜力


北美页岩气现状

中国页岩气潜力
页岩气评价技术

北美页岩气现状
Just to maintain the current supply level, unconventional gas production will have to double from 5 to 10 TCF. This is why coalbed gas and shale gas have received so much attention

and

Worldwide Distribution of Shale and Coalbed Gas Resources

Holditch, 2005

Unconventional Impact on U.S. Gas Production

In 2004, 6 of top 10 fields were unconventional and accounted for 74% of the total production of 3.8 tcf

Unconventional Impact on U.S. Reserves
?
?

Of the 18.6 tcf of natural gas production in 2002, 32% was from unconventional resources (EIA, 2005) By 2025, EIA predicts 48% of 21.3 tcf gas produced will be unconventional

Pollastro, 2007

US Unconventional Gas Forecast

DOE/ EIA 2006 Kuskara

History of Production from Shale Gas Systems
? 1st commercial natural gas was produced from Devonian Shale in 1821 (New York)

? Ohio Shale (Applachian Basin) began producing gas in the 1920’s and reached 100 BCF per year by 1981
? Antrim Shale (Michigan Basin) began producing in early 80’s and contributed 200 BCF of gas in 1999 from 6500 wells ? Barnett (Ft. Worth Basin), New Albany (Illinois Basin), and Lewis Shales (San Juan Basin) became commercially productive in the mid80’s ? Shale gas reservoirs in the U.S. produce 600 BCF of gas per year - Equivalent to 4% of total gas production - 35,000 producing wells Curtis, 2002 ? Accumulations outside the U.S. are being tested - Canada started to produce

U.S. Natural Gas Resource Opportunities

Active U.S. Shale Gas Plays
Williston Basin
Bakken Shale-OIL Illinois Basin New Albany Shale
GIP/Section = 10 Bcf Tech. Rec. = Proved Res. = 0.100 Tcf Avg. Daily Production = 9.7 Mmcfd

Michigan Basin Antrim Shale
GIP/Section = 20 Bcf Tech. Rec. = 18.8 Tcf Proved Res. = 1.58 Tcf Avg. Daily Production = 452 Mmcfd

Unita, Piceance,
Mowry Shale Arkoma Basin Cney,Fayetteville,Woodford Shale
GIP/Section = 20-150 Bcf Tech. Rec. = 25 Tcf Proved Res. = 10 Tcf Avg. Daily Production = 200 Mmcfd

California Basins
Monterey Shale-OIL Appalachian Basin Ohio Shale
GIP/Section = 20 Bcf Tech. Rec. = 12.2 Tcf Proved Res. = 3 Tcf Avg. Daily Production = 411 Mmcfd

San Juan Basin Lewis Shale
GIP/Section = 142 Bcf Tech. Rec. = na Proved Res. = 0.3 Tcf Avg. Daily Production = 52 Mmcfd

Ft. Worth Basin Barnett Shale
GIP/Section = 142 Bcf Tech. Rec. = 20 Tcf Proved Res. = 10 Tcf Avg. Daily Production = 1200 Mmcfd

Reserves calculated based on current production rate x RLI

U.S. Natural Gas Resource Opportunities

U.S. Source Rocks w/ Gas Shale Potential
Anadarko & Arkoma Basins
Woodford Shale Caney Shale Fayetteville Sylvan

Cherokee Basin
Penn Shales Woodford Simpson Group

Forest City Basin
Excello Shale Verdigris Shale Decorah Shale

Rocky Basins

California Basins
McClure Shale Monterey Shale Sacramento Shale Ricon Shale

Delaware, Permian Basin
Barnett Shale Woodford Shale Wolfcamp Penn Shale

Appalachian Basin
Utica Shale Rochester Shale Chattanooga Shale

Black Warrior Basin Val Verde Basin
Barnett Shale Woodford Shale Wolfcamp Penn Shale Chattanooga Shale Neal Shale Floyd Shale

Gulf Coast TX
Bossier Eagleford Austin

Gulf Coast LA
Tuscaloosa Shale Smackover Carb. Mudstones

US Shale gas basins
密执安

圣胡安

富特沃斯
Mike Party, Schlumberger, 2007

Values of Key Parameters for the Largest Fractured Shale Gas Plays in the U.S.
Property
Net Thickness (feet) TOC (%) Gas-Filled Porosity (%) Gas content (scf/ton) Adsorbed gas (%) Gas Rate (MCFD)

Antrim
70-120 0.3-24 4 40-100 70 40-500

Ohio
30-100 0-4.7 2 60-100 50 30-500

New Albany
50-100 1-25 5 40-80 40-60 10-50

Barnett
50-200 4-8 2.5 50-200 20 100-1000

Lewis
200-300 0.45-2.5 1-3.5 15-45 60-85 100-200

GIP (BCF/section)
Reserves (MMCF/well) Total Shale GIP (TCF)

6-15
200-1200 35-76

5-10
150-600 225-248

7-10
150-600 86-160

30-40
500-1500 54-202

8-50
600-2000 97

Recoverable Resources (TCF)

11-19

14-28

2-19

3-10

??
Curtis, 2002

Canadian Shale gas basins

F.M. Dawson, Canadian Society for Unconventional Gas, 2008

British Columbia, Canada

Warren Walsh, Ben Kerr and Chris Adams Resource Development and Geosciences Branch, BC, Canada

BC’s Unconventional Gas Potential (OGIP)

Warren Walsh, Ben Kerr and Chris Adams Resource Development and Geosciences Branch, BC, Canada

North East British Columbia Gas forecast to 2025

Warren Walsh, Ben Kerr and Chris Adams Resource Development and Geosciences Branch, BC, Canada

中国页岩气潜力
页岩气 是指位于暗色泥页岩或者高碳泥页岩中,
以吸附或游离态为主要存在方式的天然气。 天然气以多种相态存在;为典型的“原地”成藏 模式,表现为天然气在源岩中大量滞留的结果。一 般采用地质分析、测井分析、地震追踪等方法综合 对其进行识别和预测研究。

中国页岩气潜力
生成条件
烃源岩岩性为沥青质或富含有机质的暗色、黑色泥页岩和高碳泥页岩。 以生物化学作用和热裂解作用为主要形式,对烃源岩成熟度条件要求不 高。 需要:

中国页岩气潜力
储存条件
无需常规圈闭的存在,页岩本身作为储集层,总孔隙度一般 小于10%,需要页岩厚度在30m以上。

存在 形态

中国页岩气潜力
运移条件
天然气就近聚集,仅发生有限的初次运移。生烃初期为吸附
聚集;大量生烃阶段以活塞式整体推进方式运移;生烃高峰 时期为置换式运聚方式为主。

成藏特征
页岩气成藏与圈闭形成条件无关,一般位于盆地内构造的深 部位。气藏温度和地层压力均较高。

中国页岩气潜力
有机碳含量较高可以弥补有机质成熟度低的缺点;页岩厚度有限但有机质成熟 度较高仍可以使得生气量较高。

通过对美国泥岩气成藏条件进行分析发现:各成藏条件之间可互补缺点。例如:

Pcg: 含气孔隙度 Abs: 平均吸附含气量 Ro: 最大镜质体反射率 H: 页岩最小平均厚度 TOC:有机碳最大含量

传统泥页岩裂缝油气与典型页岩气特征对比表
特征对比 生烃能力 烃类产物 天然气成因 赋存相态 传统泥页岩裂缝油气 有或无 以油为主 热成熟 游离 典型页岩气 生气能力强 以气为主 生物气到高过成熟气 游离或吸附 泥页岩及夹层中的裂 缝、缝隙、有机质等 原地聚集

赋存介质
成藏特点

泥岩或页岩的裂缝
原地、就近或异地聚集

中国页岩气潜力

中国页岩气潜力

中国页岩气潜力

中国页岩气潜力

蜀南区块下志留统页岩烃源岩厚度100~700 m ,平均400 m ,最大823 m ,其中优 质页岩厚度为130~210m,有机碳含量2.2 %~4.1% , Ro为2.2 %~3.1 %,吸附气 含量为0.3~1m3/t,页岩气的地质储量可达到30~40×108m3/km2,蜀南区块下志 留统页岩分布面积为3×104km2,页岩气地质储量可达到90~120万亿立方米。

页岩气评价技术
Gas Shale Consortium – Project Scope
?

Geological analyses

?
? ? ? ? ? ?

Geochemical analyses
Petrophysical properties Geomechanical properties Develop petrophysical model Fracture Stimulation Design Production and EUR Forecasting Production Analysis

Analytical Program (Conventional Core)
Complete Cored Interval ? Spectral Core Gamma ? Fracture & Sedimentological Description ? Core Photography Basic Rock Properties ? Gas Shale Characterization (GRI) ? Pulse-Decay Permeability (where possible)

Reservoir Geology & Geochemistry ? Geochemistry (TOC, Pyrolysis, Vitrinite Reflectance) ? Thin Section Petrography ? X-Ray Diffraction

Analytical Program (Conventional Core)
Adsorption & Desorption ? Desorbed gas content & composition ? Adsorption isotherm ? Isotope Analysis
Completion & Stimulation ? Geomechanical Properties (Single-State & Multi-Stage) ? Proppant Embedment ? Fracture Conductivity ? Capillary Suction (CST) ? Roller-Oven Testing ? Core Flow (Fluid Sensitivity) Future Testing ? Preserve Selected Representative Full-Diameter Segments

Gas Shale Consortium

SUMMARY OF
RESERVOIR GEOLOGY

Total Core Basin (feet)
Basin Appalachian Total Core (feet) 3598 Wells (#) 7
Other 9% Raton 7% Williston 6% Gulf Coast 5%

Arkoma
Western Canada Illinois Fort Worth Delaware Raton Williston

1937
1694 1499 1395 1238 1072 1008

10
4 13 11 9 1 1
Appalachian 23%

Western Canada 11% Delaware 8%

Illinois 10%

Gulf Coast
* Other

830
1446

2
13

Arkoma 12%

Fort Worth 9%

Arkoma

Fort Worth

* Includes: Delaware, Palo Duro, Paradox, Wind River, Black Warrior, Green River, Uinta, East Texas

Footage by Formation
Waltman, Bend, Lewis, Hamilton, Cisco, Mancos, Honaker Trail, Trenton, Eagleford, Alderson, Ohio, Bossier, Haynesville, Gothic, Phillips, Carlile, West Falls, Hovenweep

Formation
Floyd Barnett Colorado Pierre Woodford New Albany Conasauga Caney Kettle Point Milk River Bowdoin Niobrara Fayetteville Other

# of Wells
2 11 4 1 9 6 1 4 1 1 1 2 1 6

Total Footage
2412 1601 1510 1072 852 789 518 437 367 298 276 251 222 1821

Other

Floyd

Kettle Point

Barnett

Colorado Pierre

X-Ray Diffraction Summary

Summary of Reservoir Geology
X-RAY DIFFRACTION (Whole Rock Mineralogy)
100 90 80

1308 Samples

Weight Percent

70 60 50 40 30 20 10 0
Min Max Avg Qtz 0 99 39 Ksp 0 33 2 Plg 0 34 5 Cal 0 98 15 Dol 0 94 6 Sid 0 74 2 Pyr 0 45 6 Mar 0 11 2 Flu 0 36 5 Gyp 0 5 1 Sph 0 6 1 Other 0 99 6 Cly 0 94 31

Summary of Reservoir Geology
X-RAY DIFFRACTION (Clay Mineralogy)
100
Relative Abundance (Normalized to 100%)
1308 Samples

90 80 70 60 50 40 30 20 10 0
Min Max Avg Rel % 0 83 33 SMin 10 90 18 SMax 15 95 23 I/M 0 100 61 C/S 11 59 30 Kao 0 88 11 Chl 0 100 18

Gas Shale Consortium

SUMMARY OF

PETROPHYSICAL ROCK
PROPERTIES

Shale Gas Reservoir Core Analysis
Development of Laboratory and Petrophysical Techniques for Evaluating Shale Reservoir
Final Report (GRI-95/0496) Gas Research Institute, April 1996
SELECTED SAMPLE (Fresh Core Material) (~ 300 grams) ~ 50 grams BULK DENSITY (Representitive Sample) (Multiple Measurements) (Vb by Hg Immersion)

CRUSH SAMPLE (20/35 Mesh Size) (~ 250 grams)

UNUSABLE SIZE FRACTION (~ 50 grams) ~ 50 grams

~ 200 grams

DEAN-STARK ANALYSIS (Toluene, 1 week) (~115 ° C)

PRESSURE-DECAY MATRIX PERMEABILITY (Effective Perm, Crushed sample

Sw computed using a default brine concentration of 30,000 ppm

HIGH-TEMPERATURE DRYING (110°C, 1 week minimum) GRAIN VOLUME MEASUREMENT (Total & Gas-Filled Porosity) (Sg & Grain Density) (Total So & Sw)

Total Porosity & Saturations include all interconnected pore space

So computed using a default ambient oil density of 0.8 g/cc

DATA INTEGRATION

Summary of Rock Properties
BASIC ROCK PROPERTIES (GRI Method)
1E-01 1E-02
Matrix Permeability, md
1156 Samples
Paleozoic Non-Paleozoic [6 Wells] (< 6000 ft) Non-Paleozoic [2 Wells] (> 11,000 ft)

1E-03 1E-04 1E-05 1E-06 1E-07 1E-08 1E-09 1E-10 1E-11 1E-12 1E-13 1E-14 0 5 10 15 20 25 30 35

Total (Interconnected) Porosity, percent

Summary of Rock Properties
BASIC ROCK PROPERTIES (GRI Method)
1E-01 1E-02
Matrix Permeability, md
1156 Samples Barnett Formation, 204 Samples
Crushed Sample (20/35 Mesh) Effective Permeability

1E-03 1E-04 1E-05 1E-06 1E-07 1E-08 1E-09 1E-10 1E-11 1E-12 1E-13 1E-14 0 5 10 15 20 25

All Wells Delaware (Ward Co) Delaware (Other Counties) Fort Worth Basin

30

35

40

45

Total (Interconnected) Porosity, percent

Summary of Rock Properties
BASIC ROCK PROPERTIES (GRI Method)
1E-01 1E-02
Matrix Permeability, md
1156 Samples
Crushed Sample (20/35 Mesh) Effective Permeability

1E-03 1E-04 1E-05 1E-06 1E-07 1E-08 1E-09 1E-10 1E-11 1E-12 1E-13 1E-14 0 5 10 15 20 25 30
JIP Data Published GRI Data, FMC 69 Well Published GRI Data, FMC 78 Well y = 5E-09x R2 = 0.7068
3.2936

Gas-Filled Porosity, percent

Summary of Rock Properties
BASIC ROCK PROPERTIES (GRI Method)
40 35
Total Porosity, percent

30 25 20 15 10 5 0 0 5 10 15 20 25 30 35 40
1156 Samples

Gas-Filled Porosity, percent

Summary of Rock Properties
BASIC ROCK PROPERTIES (GRI Method)
14 12
Total Porosity, percent
y = 1.099x + 3.4249 R2 = 0.9166 y = 0.9395x + 2.6871 2 R = 0.9485

10
1156 Samples

8 6

Bulk Volume Water 3.42 %

Barnett (Fort Worth Basin)

4
All Wells

2 0 0

Bulk Volume Water 2.69 %

Muir 1-H Cass-Edwards B 4H

2

4

6

8

10

12

14

Gas-Filled Porosity, percent

Summary of Rock Properties
BASIC ROCK PROPERTIES (GRI Method)
14 12
Total Porosity, percent

10 8 6 4 2
1156 Samples All Wells Grassy Creek (All Wells) Bulk Volume Water 1.92 % y = 0.9302x + 1.9173 R2 = 0.9275

0 0 2 4 6 8 10 12 14

Gas-Filled Porosity, percent

Summary of Rock Properties
BASIC ROCK PROPERTIES (GRI Method)
3.0
1156 Samples All Wells Non-Paleozoic (< 6000 ft) Sandstone Carbonate

2.8
Bulk Density (GRI), g/cc

2.6 2.4 2.2 2.0 1.8 1.6 0 2 4 6 8 10 12 14 16

Total Organic Carbon (TOC), wt %

Summary of Rock Properties
BASIC ROCK PROPERTIES (GRI Saturation)
1E-01 1E-02
Matrix Permeability, md
1156 Samples y = 4E-13x3.4553 2 R = 0.5861

1E-03 1E-04 1E-05 1E-06 1E-07 1E-08 1E-09 1E-10 1E-11 1E-12 1E-13 1E-14 0

Crushed Sample (20/35 Mesh) Effective Permeability

All Wells Lewis (Washakie) Paradox (Hovenweep & Gothic) Hamilton (Appalachian) Haynesville (East Texas)

20

40

60

80

100

Gas Saturation, percent

Gas Shale Consortium

ABSOLUTE versus
EFFECTIVE MATRIX

PERMEABILITY

Summary of Rock Properties
BASIC ROCK PROPERTIES (GRI Method)
1E-02
Crushed Sample (20/35 Mesh)

1E-03
(Effective), md
Matrix

1E-04 1E-05 1E-06 1E-07 1E-08 1E-08

K

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

K Matrix (Absolute), md

Summary of Rock Properties
BASIC ROCK PROPERTIES (GRI Method)
1E-01 1E-02
Matrix Permeability, md
All Wells Effective Permeability (as-received) Absolute Permeability (clean & dry) 1156 Samples

1E-03 1E-04 1E-05 1E-06 1E-07 1E-08 1E-09 1E-10 1E-11 1E-12 1E-13 1E-14 0 5 10 15 20
Crushed Sample (20/35 Mesh)

25

30

35

40

45

Total (Interconnected) Porosity, percent

Gas Shale Consortium

SUMMARY OF
GEOMECHANICAL

PROPERTIES

Summary of Geomechanical Properties
GEOMECHANICAL PROPERTIES (Proppant Embedment)
2.5
Econoprop 20/40 Type III Curve

2.0
Embedment, mm (per fracture face)

70 Samples Type II Curve

1.5
Type I Curve

1.0

0.5

0.0 0 2000 4000 6000 8000 10000

Closure Stress, psi

Summary of Geomechanical Properties
GEOMECHANICAL PROPERTIES (Young's Modulus)
16
Static Young's Modulus, M psi
Shale Carbonate

14 12 10 8 6 4 2 0 0

282 Samples

10

20

30

40

50

60

70

Total Clay (XRD), wt %

Summary of Geomechanical Properties
GEOMECHANICAL PROPERTIES (Young's Modulus)
16
High Axial Stress

Static Young's Modulus, M psi

14
125 Samples

12 10 8 6 4 2 0 0 2 4 6 8 10 12 14 16
y = 0.8835x - 1.9311 R2 = 0.8125

Shale Sandstone Carbonates

Dynamic Young's Modulus, M psi

Summary of Geomechanical Properties
GEOMECHANICAL PROPERTIES (Compressive Strength)
16
Static Young's Modulus, M psi

14
Reservoir Stress

y = 0.2308x R2 = 0.6373

325 Samples

12 10 8 6 4 2 0 0 20 40 60 80 100
Shale Sandstone Carbonates y = 0.1424x R2 = 0.4875

Confined Compressive Strength, 103 psi

Summary of Geomechanical Properties
GEOMECHANICAL PROPERTIES (Velocity Comparison)
240
Vs Transit Time, micro-sec/ft

220 200 180 160 140 120 100 80 60 40

High Axial Stress 152 Samples

y = 1.6205x + 3.8264 2 R = 0.9611

All Wells Sandstone Carbonates

60

80

100

120

140

160

Vp Transit Time, micro-sec/ft

Summary of Geomechanical Properties
GEOMECHANICAL PROPERTIES (Poisson's Ratio)
Poisson's Ratio (High Axial Stress)

0.35
152 Samples

0.30 0.25 0.20 0.15 0.10 0.05 0.00 0.00
Effect of micro-fracture closure at high axial stress

y = 0.8982x + 0.0309 R2 = 0.9245

Shale Sandstone Carbonates

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Poisson's Ratio (Low Axial Stress)

Gas Shale Consortium

SUMMARY OF
SORBED GAS

PROPERTIES

Summary of Sorbed Gas Properties
Formation/Basin Barnett Caney-Woodford Group Palo Duro Basin Raton Basin Illinois Basin Appalachian Basin Paradox Basin Non-Paleozoic (<6000 ft) Avg Total Desorbed Gas (scf/ton) 105.4 83.1 58.3 43.5 39.6 35.2 34.5 13.7
Appalachian Basin Paradox Basin NonPaleozoic 0 105.4 Barnett CaneyWoodford Palo Duro Basin Raton Basin 39.6 Illinois Basin 35.2 34.5 58.3 43.5 83.1

Arkoma
13.7

Fort Worth
100 150

50

Summary of Sorbed Gas Properties
Formation/Basin
Apparent Sorbed Gas (mole%)

Barnett CaneyWoodford Palo Duro Basin Raton Basin

C1 Barnett Caney-Woodford Group Palo Duro Basin Raton Basin Illinois Basin Appalachian Basin 64.3 72.7 49.1 68.7 76.9 49.3

C2 10. 8 8.8

C3-10 15.7 8.6 27.7 8.2 9.1 28.5

CO2 9.1 9.9

12. 5
11. 5 12. 3 17.7

10. 7
11. 6 1.6 4.6

Illinois Basin Appalachian Basin NonPaleozoic
0% 20% C1 40% C2 60% C3-10 80% CO2 100%

Arkoma

Non-Paleozoic (<6000 ft)

56.7

13. 2

22.6

7.5

Summary of Sorbed Gas Properties
SORBED GAS (Adsorption Isotherm)
200
Storage Capacity (CH4), scf/ton

180 160 140 120 100 80 60 40 20 0 0

151 Samples

Barnett

All Wells Delaware Basin Fort Worth Basin

1000

2000

3000

4000

5000

Pressure, psia

Continental Wilson B 14-12 – Basic Log
0 0 0 COREDS 20 COREDS 0 0 7380 7400 7420 7440 GR GAPI CALI 600 DEPTH FT RT 0.2 0.2 0.2 2000 2000 2000 1.95 0.45 RM 10 COREGRXX 600 RXO

RHOB 2.95 NPOR CFCF -0.15

Mayes

Woodford

7460 7480 7500 7520 7540 7560 7580 7600

Core-Log Petrophysical Modeling: TOC Determination
?

RHOB

2.1

2.2

2.3

2.4

?

TOC data in the Wilson well on trend with project data

RHOB 2.5

2.6

Gas shale literature suggests a reasonable relationship between TOC (wt%) and RHOB

2.9

3

Wilson Data

2.7 2

2.8

0

2

4

6

8

10 TOC

12

14

16

18

20

TOC

Core-Log Petrophysical Modeling: Kerogen Modeling
8 9 10

?

? ?

XRD Kerogen was corrected to a bulk volume using the following formula and the GRI Porosity ? XKEROC = XKERO * (1GPHI) All XRD volumes were similarly corrected Kerogen and TOC modeled using RHOB curve with equation derived from crossplots ? TOC = -21.4*RHOB +58.3

TOC

TOC

0

1

2

3

4

5

6

7

3

2.9

2.8

2.7

2.6

2.5 RHOB

2.4

2.3

2.2

2.1

2

WELL: GSS24 Wilson B 14-12 ZONE: 5825.000 - 7662.000 FT DATE: 5 Mar 2007 @ 16:36

Core-Log Petrophysical Modeling: Log Analysis Model
?

Several options available for porosity modeling: ? Porosities can be calculated if the matrix volumes are known ○ 1- Vp - Vcl - Vqtz - Vk = F
? ?

LOG ANALYSIS MINERALOGY MODEL
KEROGEN POROSITY

Model PHI directly
QUARTZ ILLITE

Alternatively core or modeled grain densities can be used in order to calculate a density porosity

PYRITE
(ADAPTED FROM GUIDRY ET AL., 1990)

Core-Log Petrophysical Modeling: Clay Volume Modeling
?

?

Clay volume model attempted using GR, Core Spectral Gamma and other logs including the ECS Clay Fraction curve ECS gave poor relationship to XRD clay volumes

XRD CLAY

0.1 0

0.2

0.3

0.4

XTCLAYC 0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5 WCLA_WAL

0.6

0.7

0.8

0.9

1

WELL: GSS24 Wilson B 14-12 ZONE: 6177.000 - 7600.000 FT DATE: 17 Apr 2007 @ 8:57

ECS CLAY

Core-Log Petrophysical Modeling: Clay Volume Modeling
?

XRD CLAY

0.1 0

0.2

0.3

? VCL = 0.00023 * RT +0.21

0.4

XTCLAYC 0.5

The Deep Resistivity curve gave the most reliable relationship to XRD Clay volume

0.6

0.7

0.8

0.9

1

0

100

200

300

400

500 AHT90E

600

700

800

900

1000

WELL: GSS24 Wilson B 14-12 ZONE: 6177.000 - 7600.000 FT DATE: 17 Apr 2007 @ 8:53

RT

Core-Log Petrophysical Modeling:Developing a Mineral Model
?

0.05 0

?

Cumulative errors in volume modeling gave porosity model that failed to honor core porosities

0.1

? PYR = 1.158 * RHGE – 3.12

0.15 XPYRGRP

Pyrite Group (Pyrite, Siderite, Marcasite) volume gave a good relationship with the ECS Matrix Density curve

XRD PYRITE GROUP

0.2

0.25

0.3

?

Other mineral models also attempted

3

2.9

2.8

2.7

2.6

2.5 RHGE_WAL

2.4

2.3

2.2

2.1

2

WELL: GSS24 Wilson B 14-12 ZONE: 5825.000 - 7662.000 FT DATE: 30 Apr 2007 @ 9:56

ECS MATRIX DENSITY

Core-Log Petrophysical Modeling:Direct Porosity Modeling
Porosities were modeled directly from the GRI PHI data using the neutron log ? PHI = +0.245*NPOR + 0.014 ? Additionally porosities were calculated using the following equation – solving for porosity ? ρlog = ρmatrix (1?φ ?VKero) + ρfluid φ + ρKero VKero ? A ρfluid value equivalent to the modeled water saturation fluid densities honored the GRI porosity data
?

GRI POROSITY

0.05 0

0.1

0.15 GPHI

0.2

0.25

0.3

-1

-0.8

-0.6

-0.4

-0.2

0 NPOR

0.2

0.4

0.6

0.8

1

WELL: GSS24 Wilson B 14-12 ZONE: 5825.000 - 7662.000 FT DATE: 5 Mar 2007 @ 16:26

NPOR

Core-Log Petrophysical Modeling: Sw Modeling
?

GRI SW

?

100

90

Typically we see a relationship between TOC and Core Sw, in this case ? SW = -6.75*TOC + 66.6

80

70

60

G_SW_ 50

Water saturations are difficult to model in Gas Shales. Variety of Sw models used to give confidence to the modeling process

40

30

20

10

0

?

Sw model gave a continuous Sw curve in the well

0

1

2

3

4

5

6

7 TOC_

8

9

10

11

12

13

14

WELL: GSS24 Wilson B 14-12 ZONE: 5825.000 - 7662.000 FT DATE: 30 Apr 2007 @ 10:32

TOC

Core-Log Petrophysical Modeling: Sw Modeling
Water saturations typically show a reasonable relationship to GRI permeability ? SW = -13.7 * log(K) + 37.1 ? Sw model used to provide a continuous Sw curve in the well (Sw_K) ? Additionally a Shaly Sand water saturation was calculated – Rw derived from modeling 100% Sw in low resistivity zones ? Also Sw calculated assuming a BVW of 2.0% ? SW = 0.02/PHI
?
30 20 10 0

GRI SW

100

90

80

70

60

G_SW_ 50

40

0.00001

0.0001

0.001

0.01

0.1 G_NK_

1

10

100

1000

10000

WELL: GSS24 Wilson B 14-12 ZONE: 5825.000 - 7662.000 FT DATE: 30 Apr 2007 @ 10:36

GRI PERMEABILITY (nd)

Core-Log Petrophysical Modeling:Permeability Modeling
GRI PERMEABILITY
0.0001 100 G_NK_ 0.01 0.1 1 10 1000

?

Porosity and permeability data (converted to the nanodarcy range) was used to derive a permeability model Relationship used to calculate a continuous permeability curve in the well

?

0.001

?

Log(k)= 48.3 *PHI –3.78

10000

40

50

60

70

80

90 DTCPHIA

100

110

120

130

140

WELL: GSS24 Wilson B 14-12 ZONE: 5825.000 - 7662.000 FT DATE: 30 Apr 2007 @ 11:01

GRI POROSITY

Core-Log Petrophysical Modeling: Total Gas Content Modeling
?

ISGSC

Sorbed Gas was modeled using the Kerogen data and the Isotherm In Situ Gas Storage Capacity data
?

Typical ISGSC model
130 0 10 20 30 40 50 60 ISGSC_ 70 80 90 100 110 120 140

ISGSC 492 *KEROGEN +9.1 Gst ? Gs= ? Gsf ? Gsd

where: Gst = total gas storage capacity, scf/ton Gs = sorbed gas storage capacity, scf/ton Gsf = free gas storage capacity, scf/ton Gsd = dissolved gas storage capacity, scf/ton

0

0.05

0.1

0.15

0.2 XKEROC

0.25

0.3

0.35

0.4

WELL: GSS24 Wilson B 14-12 ZONE: 5825.000 - 7662.000 FT DATE: 6 Mar 2007 @ 10:13

ISGSC_ >= 10

KEROGEN

Continental Wilson B 14-12 Evaluation
0 0 GR DEPTH GAPI 600 FT 0.2 COREGR_ 600 0.2 10 RT RM RHOB PHI 2000 1.95 2.95 0.2 VCL 0 0 1 0 SORBGAS SW_CRV G_NK_ DTCO DTCO PF_ ? 200 100 0 0.0001 ? 100 140 40 40 120 0 15 COREDS 20 0 COREDS 0 G_RHOB_ DPHIMODC ? ? ? ? 0 1 2.95 0.2 RT 1.95 PHI 0.05 1 PHIKP PHIK 0 0 SORBGAS 100 ISGSC_ SWIND ? 0 0 ? 200 1 DEC 0 SW_K 0 PRS_S 0 PR_S_ DTCPHIAR ? 0 ? 0.5 40 120 PF_ 0

NPHI GPHI XTCLAYC TOTALGAS G_SW_ K_MOD DTSM DTCPHIA PFOC_ ? ? 0 0 ? dec ? 1 0 ? ? 0 0.0001 100 240 2000 0.45CFCF -0.15 0.2 200 100 nd 40 40 120 0 15

DTCPHIN PFOCM 0.5 40 120 0 15

Clay volume
7400 7420 7440 7460 7480 7500 7520

GPHIK SW_BV3 ? 0 SORBGAS 1 ? 0 TOTALGAS 1

Sw models
? ? ? ? ? ? ? ?

PFOC_ PF_

? ? ? ? ? ? ?

Pyrite:Red ? Kerogen:Gray ? ? PHI:?Blue
? ? ? ? ? ? ? ? ?

?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ?? ? ? ?? ?? ?? ? ? ?? ? ? ? ?? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

?

Perm model

? ? ?

?

? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ?

?
7540 7560 7580 7600

? ? ? ?

?

PHI > 5%

Sonic Surrogates

页岩气开发技术

Multi-Stage Fracturing
The Woodford Shale May 22, 2008

Location Preparation
?

All equipment must be strategically placed
? Flow Back Tank Placement ? Frac Row Tank Placement ? Sand Bin Placement

? Water Transfer equipment and lines

?

Frac Ponds built well in advance of treatment
- Facilitates long range pumping (if required) ? Trap rain water

Typical Frac Location Set Up
Flow back tanks

Water transfer lines

Emergency frac tanks

Acid tanks Working tanks

The Process
?

Well preparation (3 days)
? ? ?

MIRU production equipment Test casing Perforate via coil or tractor 7-9 frac treatments

? ? ?

Stimulation (2-3 days)
?

Coil tubing drill out Flow and put to sales

Stimulation Process
?Perforate ?Frac 射孔 压裂 放塞子 重复 钻塞子 测试 ?Set Plug/Perforate ?Repeat Process ?Drill out plugs ?Flow and test

Fracture treatment design
? Proppant slugs of 0.05, 0.1 , and 0.15 ppg utilized to

eliminate tortuosity prior to starting proppant stages ? (初期用三种浓度的支撑剂去除弯曲度)
? Proppant mass of ~235 lbs per foot of lateral ? (支撑剂的量是每英尺235) ? Fluid volume 1,000 gals per foot of lateral ? Maximum rate achieved during pad if possible, but dictated

by formation response
? Maximum proppant conc of 1.2 during 30/70 stage ? Sweeps pumped between all proppant stages

Completion Notes
Current frac stage length 500’ ? Pump down plug and perforating essential to continuous operations ? Currently average 3 fracs/per day ? Frac crews and field personnel work 12 hour shifts ? Reduces cost of rental items and time to first sales
?

Microsiesmic events recorded during four stage stimulation completion on Barnett shale horizontal well

Plan view

Side view

Courtesy of Schlumbeger

Fracture orientation in horizontal and Deviated wells
Well drilled parallel to max stress Maximum stress

Well drilled perpendicular to max stress

Single fracture formed

Multiple fracture formed

Preferred fracture plane
surface

reservoir
Wellbore azimuth 90 transverse fracture
Wellbore azimuth longitudinal fractures
Vertical stress

Min horizontal stress


相关文章:
页岩气的开发现状及发展趋势
国页岩气勘探开发起步较 晚,页岩气相关的资源情况技术开发应用、理论研究、评价测试等基本问题, 还处于探索起步阶段。 1 第二章 2.1 全球页岩气潜力 世界...
2016年页岩气现状研究及发展趋势
暂无评价|0人阅读|0次下载|举报文档2016年页岩气现状研究及发展趋势_能源/化工...中国天然气在能源结构中的地位 四、中国非常规天然气发展潜力 五、中国页岩气将...
中国页岩气产业发展现状及对策建议
面对“十三五”,中国页岩气产业亟待解决资源评价、开采矿权管 理以及环境监管等问题。 1 中国页岩气产业发展现状 1.1 页岩气资源潜力巨大 从 2009 年至 2015 ...
2016年页岩气发展现状及市场前景分析
2016年页岩气发展现状及市场前景分析_经济/市场_经管营销_专业资料。中国页岩气...页岩气选区评价技术 5.1.1 页岩气有利目标区优选技术 5.1.2 页岩气储层...
中国页岩气开发的现状和前景报告
摘要本文概述了页岩气开发的意义,分别介绍了国外和国内页岩气开发现状, 通过对比美国与中国页岩气特点和开发技术,分析中国页岩气开发的前景,并对 中国页岩气开发...
页岩气行业现状及发展趋势分析
暂无评价|0人阅读|0次下载|举报文档 页岩气行业现状及发展趋势分析_纺织/轻工业...中国天然气在能源结构中的地位 四、中国非常规天然气发展潜力 五、中国页岩气将...
2017-2022年中国页岩气勘探开发市场现状研究及未来前景...
中国非常规天然气发展潜力 1.2.5 中国页岩气将迎来黄金时期 1.3 页岩气资源潜力评价及优选 1.3.1 资源潜力评价进程及成果 1.3.2 资源潜力评价及优选 (1)...
2015年页岩气调研及发展前景分析
暂无评价|0人阅读|0次下载|举报文档2015年页岩气调研及发展前景分析_调查/报告_表格/模板_实用文档。2015-2021 年中国页岩气行业发展现状调研 与发展趋势分析报告 ...
2017-2022年中国页岩气勘探开发市场竞争格局与发展前景...
页岩气的战略定位 1.2.1 中国油气资源消耗现状 1...中国非常规天然气发展潜力 1.2.5 中国页岩气将...页岩气选区评价技术 5.1.1 页岩气有利目标区优选...
2017年中国页岩气勘探开发市场竞争格局及发展前景预测(...
技术 技术现况 技术关联 新产品技术动向 替代技术 专利 标准 零组件 技术层次 ...中国非常规天然气发展潜力 1.2.5 中国页岩气将迎来黄金时期 1.3 页岩气资源...
更多相关标签: