当前位置:首页 >> 数学 >>

对高中立体几何中“三垂线定理的几点思考”


对高中立体几何中“三垂线定理的几点思考” 摘要三垂线定理是高中立体几何中解决线线垂直、线面垂直的重要工具,为 找二面角及相关证明带来很多方便。 主要对三垂线定理进行深入的剖析并对其在 实际解题中的应用做相关的分析与拓展。 关键词三垂线;二面角;垂直 1 准备知识 定理 1:如果一条直线和平面内的两条相交直线都垂直,那么这条直线垂直于 这个平面。定理 2:如果不在平面内的一条直线和

平面内的一条直线平行,那么这 条直线和这个平面平行。定理 3:如果一条直线和一个平面平行,经过这条直线的 平面和这个平面相交,那么这条直线和交线平行。定理 4:如果一个平面内有两条 相交直线分别平行于另一个平面,那么这两个平面平行。定理 5:如果两个平行平 面同时与第三个平面相交,那么它们的交线平行。定义 1:连接平面内一点与平面 外一点的直线,和这个平面内不经过此点的直线是异面直线。定义 2:平面内的一 条直线把平面分成两部分,其中的每一部分都叫做半平面,从一条直线出发的两个 半平面所组成的图形叫做二面角。推论:如果一个平面内有两条相交直线分别平 行于另一个平面内的两条直线,那么这两个平面平行。 2 三垂线定理 (三垂线定理)在平面内的一条直线 ,如果它和这个平面的一条斜线的射影垂 直,那么它也和这条斜线垂直。 分析:首先可以看出三垂线定理的条件有两个 1)在平面内的一条直线 a;2)a 和 斜线 PA 的射影 OA 垂直;结论:a 和 PA 垂直。不难看到三垂线定理其实质是线面 垂直判定定理的一个推广:,。又 OA,OPOA=O,平面 OAP。所以在做题时不必死板 的去寻找所谓的斜线、垂线和射影,而应从宏观上把握线面垂直的判定定理。 (三垂线定理的逆定理 )在平面内的一条直线, 如果它和这个平面的一条斜线 垂直,那么它也和这条斜线在平面内的射影垂直。 分析:我们也不难看出三垂线定理和平面与平面垂直紧密联系着,因平面与平 面垂直的判定定理是:如果一个平面过另一个平面的一条垂线,那么这两个平面垂 直,因此我们在证明面面垂直时,也要时刻与三垂线定理挂起钩来。 3 三垂线定理在解题中的应用 例 1:四棱锥 P-ABCD 的底是正方形,PA 平面 ABCD,PA=AD=3,E 为 PA 上的 点,且,(),Q 为 PD 上的点,且 DQ=QP。(>0) ①求证:对任意的 a(0,1],都有 BDCE; ②当取何值时,二面角 Q-AC-D 的大小为 60° 。 解:①由底面 ABCD 时正方形,可得 ACBD, 又 PA 平面 ABCD, AC 为 CE 在平面 ABCD 上的射影。 BDCE。 ②在 AD 上取一点 M,使 DM=MA,则 QM∥PA,又 PA 平面 ABCD, QM 平面 ABCD。 过点 M 作 MNAC 于点 N,连接 QN,则由三垂线定理知 QNAC, QNM 是二面角 Q-AC-D 的平面角。 在 QMN 中,QM=,又 AM=,MN=sin45° =, , 依题意 , 即当时,二面角 Q-AC-D 的大小为 60° 。 例 2: 如 图 , 在 四 棱 锥 P-ABCD 中 , 侧 棱 PA 底 面 ABCD,AD ∥ BC,ABC=,AB=PA=,ADC=arccos,点 E 为侧棱 PB 上的一 点,设, 若 PD∥平面 AEC,求 a 的值; ①求点 D 到平面 PBC 的距离; ②求二面角 C-PD-A 的大小。 解:①如图,在四棱锥 P-ABCD 中,连接 BD,交 AC 于点 F,连接 EF,PD∥平面 AEC, PD∥EF,AD

相关文章:
对高中数学新课程中“立体几何”部分若干问题的思考
对高中数学新课程中“立体几何”部分若干问题的思考张劲松摘 要:几何课程改革始终...三垂线定理及其逆定理。 平面与平面平行的判定与性质。 二面角及其平面角。 平面...
对高中数学新课程中“立体几何”部分若干问题的思考
对高中数学新课程中“立体几何”部分若干问题的思考张劲松摘 要: 几何课程改革...三垂线定理及其逆定理。 平面与平面平行的判定与性质。 二面角及其平面角。 平面...
立体几何知识点总结(少三垂线定理)
如要投诉违规内容,请到百度文库投诉中心;如要提出功能问题或意见建议,请点击此处进行反馈。 立体几何知识点总结(少三垂线定理) 隐藏>> 立体几何复习总结一、平面的...
对高中数学新课程中立体几何部分若干问题的
对高中数学新课程中“立体几何”部分若干问题的思考张劲松摘 要:几何课程改革始终...三垂线定理及其逆定理。 平面与平面平行的判定与性质。 二面角及其平面角。 平面...
浅谈高中数学新课程中立体几何
浅谈高中数学新课程中 “立体几何”部分的内容与要求...与要求为例,谈一下粗浅的 认识,希望对教学有一定...三垂线定理及其逆定理。 直线的方向向量,平面的法...
浅谈高中数学新课程中立体几何
浅谈高中数学新课程中 “立体几何”部分的内容与要求...对空间图形有比较完整的认识,培养和发展学生的几何...三垂线定理及其逆定理。 直线的方向向量,平面的法...
浅谈高中数学新课程中立体几何
浅谈高中数学新课程中 “立体几何”部分的内容与要求...部分的内容与要求为例,谈一下粗浅的认识,希望对教...三垂线定理及其逆定理。 直线的方向向量,平面的法...
浅析高中数学立体几何的学与考
浅析高中数学立体几何的学与考_数学_高中教育_教育...三垂线定理可以把平面内的两条直线垂直转化为空间的...在数学教材 中,理科教学更多倾向于坐标系建系后对...
对高中数学新课程中立体几何部分若干问题的
对高中数学新课程中“立体几何”部分若干问题的思考张劲松摘 要:几何课程改革始终...三垂线定理及其逆定理。 平面与平面平行的判定与性质。 二面角及其平面角。 平面...
更多相关标签:
立体几何三垂线定理 | 立体几何 | 高中立体几何知识点 | 立体几何解题技巧 | 空间向量与立体几何 | 立体几何画板 | 立体几何高考题 | 立体几何中的向量方法 |