当前位置:首页 >> 信息与通信 >>

三电平并网逆变器常用器件


FZ06NPA045FP
preliminary datasheet

flowNPC 0
Features
● *PS: 45A parallel switch (40A PT and 99m?) ● neutral point clamped inverter ● reactive power capability ● SiC

buck diode ● low inductance layout

600V/50A & 45A PS*
flow0 12mm housing

Target Applications
● solar inverter ● UPS

Schematic

Types
● FZ06NPA045FP

Maximum Ratings
Tj=25°C, unless otherwise specified

Parameter

Symbol

Condition

Value

Unit

Buck IGBT
Collector-emitter break down voltage DC collector current Repetitive peak collector current Power dissipation per IGBT Gate-emitter peak voltage Short circuit ratings Maximum Junction Temperature VCE IC ICpulse Ptot VGE tSC VCC Tjmax Tj≤125°C VGE=15V Tj=Tjmax tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 600 30 41 225 54 82 ±20 3 390 150 V A A W V μs V °C

Buck Diode
Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation per Diode Maximum Junction Temperature VRRM IF IFRM Ptot Tjmax Tj=25°C Tj=Tjmax tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tc=100°C Th=80°C Tc=80°C 600 21 27 70 44 66 175 V A A W °C

copyright Vincotech

1

Revision: 5

FZ06NPA045FP
preliminary datasheet

Maximum Ratings
Tj=25°C, unless otherwise specified

Parameter

Symbol

Condition

Value

Unit

Buck MOSFET
Drain to source breakdown voltage DC drain current Pulsed drain current Power dissipation Gate-source peak voltage Maximum Junction Temperature VDS ID IDpulse Ptot Vgs Tjmax Tj=Tjmax tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tc=25°C Th=80°C Tc=80°C 600 16 21 93 54 97 ±20 150 V A A W V °C

Boost IGBT
Collector-emitter break down voltage DC collector current Repetitive peak collector current Power dissipation per IGBT Gate-emitter peak voltage Short circuit ratings Maximum Junction Temperature VCE IC ICpuls Ptot VGE tSC VCC Tjmax Tj≤150°C VGE=15V Tj=Tjmax tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 600 50 50 225 85 129 ±20 6 360 175 V A A W V μs V °C

Boost Inverse Diode
Peak Repetitive Reverse Voltage DC forward current Power dissipation per Diode Maximum Junction Temperature VRRM IF Ptot Tjmax Tc=25°C Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 600 2 21 V A W °C

150

Boost Diode
Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation per Diode Maximum Junction Temperature VRRM IF IFRM Ptot Tjmax Tj=25°C Tj=Tjmax tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 1200 15 21 36 30 46 150 V A A W °C

copyright Vincotech

2

Revision: 5

FZ06NPA045FP
preliminary datasheet

Maximum Ratings
Tj=25°C, unless otherwise specified

Parameter

Symbol

Condition

Value

Unit

Thermal Properties
Storage temperature Operation temperature under switching condition Tstg Top -40…+125 -40…+(Tjmax - 25) °C °C

Insulation Properties
Insulation voltage Creepage distance Clearance Vis t=2s DC voltage 4000 min 12,7 min 12,7 V mm mm

copyright Vincotech

3

Revision: 5

FZ06NPA045FP
preliminary datasheet

Characteristic Values
Parameter Symbol Conditions
VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] IC [A] or IF [A] or ID [A] Tj Min

Value
Typ Max

Unit

Buck IGBT *
Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode Gate-emitter leakage current Integrated Gate resistor Input capacitance ** Output capacitance Reverse transfer capacitance Gate charge ** Thermal resistance chip to heatsink per chip
* see dynamic characteristic at Buck MosFET **additional value stands for built-in capacitor

VGE(th) VCE(sat) ICES IGES Rgint Cies Coss Crss QGate RthJH

VCE=VGE 15 0 ±20 600 0

0.00025 45

Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C

4.5

5.5 2.21 2.21

7 3 2.6 250 300

V V uA nA ? nF pF

none 2,2+4,7 f=1MHz 0 25 Tj=25°C 150 80 15 Thermal grease thickness≤50um λ = 1 W/mK 300 20 Tj=25°C 142+70 1.30

nC K/W

Buck Diode
Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip VF IRRM trr Qrr di(rec)max /dt Erec RthJH Thermal grease thickness≤50um λ = 1 W/mK Rgon=8 ? ±15 350 30 16 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 1.55 1.66 39 32 8 8 0.10 0.09 13751 10591 0.010 0.010 2.18 1.8 V A ns μC A/μs mWs K/W

Buck MOSFET
Static drain to source ON resistance Gate threshold voltage Gate to Source Leakage Current Zero Gate Voltage Drain Current Turn On Delay Time Rise Time Turn off delay time Fall time Turn-on energy loss per pulse Turn-off energy loss per pulse Total gate charge Gate to source charge Gate to drain charge Input capacitance Output capacitance Thermal resistance chip to heatsink per chip
** see schematic of the Gate-complex at characteristic figures

Rds(on) V(GS)th Igss Idss td(ON) tr td(OFF) tf Eon Eoff Qg Qgs Qgd Ciss Coss RthJH f=1MHz Thermal grease thickness≤50um λ = 1 W/mK Rgon=8 ? ** Rgoff=8 ? **

10 VDS=VGS 20 0 0 600

15 0.003

±15

350

30

Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C

2.1

109 219 3

m? 3.9 200 5 V nA uA

67 70 3.8 4.2 237 249 12 6.2 0.05 0.06 0.08 0.16 60 80

ns

mWs

±15

350

30

Tj=25°C

14 20 2800

nC

0

100

Tj=25°C 130 1.29

pF

K/W

copyright Vincotech

4

Revision: 5

FZ06NPA045FP
preliminary datasheet

Characteristic Values
Parameter Symbol Conditions
VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] IC [A] or IF [A] or ID [A] Tj Min

Value
Typ Max

Unit

Boost IGBT
Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off incl diode Gate-emitter leakage current Integrated Gate resistor Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy loss per pulse Turn-off energy loss per pulse Input capacitance Output capacitance Reverse transfer capacitance Gate charge Thermal resistance chip to heatsink per chip VGE(th) VCE(sat) ICES IGES Rgint td(on) tr td(off) tf Eon Eoff Cies Coss Crss QGate RthJH Thermal grease thickness≤50um λ = 1 W/mK 15 480 75 Tj=25°C f=1MHz 0 25 Tj=25°C Rgon=8 ? Rgoff=8 ? ±15 350 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C VCE=VGE 15 0 20 600 0 0.0012 45 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 5 1 5.8 1.28 1.31 6.5 1.9 0.03 650 none 40 37 10 13 454 502 64 87 0.72 0.96 0.85 1.16 4620 288 137 470 1.11 nC K/W pF V V mA nA ?

ns

mWs

Boost Inverse Diode
Diode forward voltage Thermal resistance chip to heatsink per chip VF RthJH Thermal grease thickness≤50um λ = 1 W/mK 20 Tj=25°C Tj=125°C 9.07 9.43 4.36 V K/W

Boost Diode
Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovery energy Thermal resistance chip to heatsink per chip VF Ir IRRM trr Qrr di(rec)max /dt Erec RthJH Thermal grease thickness≤50um λ = 1 W/mK Rgon=8 ? ±15 350 30 1200 18 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1.5 2.61 2.16 92 112 37.1 51.9 2.8 5.7 20796 20514 0.54 1.39 2.32 3.5 100 V μA A ns μC A/μs mWs K/W

Thermistor
Rated resistance* R25 R100 Tol. ±13% Tol. ±5% Tj=25°C Tj=100°C

19.1 1411

22 1486 210 4000

24.9 1560

k? ? mW K

Power dissipation B-value
* see details on Thermistor charts on Figure 2.

P B(25/100) Tol. ±3%

Tj=25°C Tj=25°C

copyright Vincotech

5

Revision: 5

FZ06NPA045FP
preliminary datasheet

Buck
Figure 1 Typical output characteristics IC = f(VCE)
100 IC (A)

MOSFET

Figure 2 Typical output characteristics IC = f(VCE)
100 IC (A)

MOSFET

80

80

60

60

40

40

20

20

0 0 1 2 3 4 V CE (V) 5

0 0 1 2 3 4 V CE (V) 5

At tp = Tj = VGE from

250 μs 25 °C 3 V to 19 V in steps of 2 V

At tp = Tj = VGE from

250 μs 125 °C 3 V to 19 V in steps of 2 V

Figure 3 Typical transfer characteristics IC = f(VGE)
30 IC (A)

MOSFET

Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF)
50 IF (A)

FRED

25

Tj = Tjmax-25°C
40

Tj = 25°C

20 30 15 20 10

Tj = Tjmax-25°C

Tj = 25°C

5

10

0 0 1 2 3 4 5 V GE (V) 6

0 0 0.5 1 1.5 2 2.5 3 V F (V) 3.5

At tp = VCE =

250 10

μs V

At tp =

250

μs

copyright Vincotech

6

Revision: 5

FZ06NPA045FP
preliminary datasheet

Buck
Figure 5 Typical switching energy losses as a function of collector current E = f(IC)
0.600 E (mWs)

MOSFET

Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG)
E (mWs) 0.600

MOSFET

Eoff High T
0.500

0.500

0.400

0.400

0.300

0.300

Eoff Low T
0.200 0.200

Eon High T Eoff High T Eon Low T
0.100

Eon High T
0.100

Eoff Low T

Eon Low T
0.000 0 10 20 30 40 50 I C (A) 60 0.000 0 8 16 24 32 RG(Ω ) 40

With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 8 ? Rgoff = 8 ?

With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = 30 A

Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic)
E (mWs) 0.025

FRED

Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG)
E (mWs) 0.014

FRED

0.020

Erec Low T

0.012

Erec Low T

0.010

Erec High T
0.015 0.008

0.010

0.006

Erec High T
0.005

0.004

0.002

0.000 0 10 20 30 40 50 I C (A) 60

0.000 0 5 10 15 20 25 30 R G ( Ω ) 35

With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 8 ?

With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 30 A

copyright Vincotech

7

Revision: 5

FZ06NPA045FP
preliminary datasheet

Buck
Figure 9 Typical switching times as a function of collector current t = f(IC)
1.00 t (ms)

MOSFET

Figure 10 Typical switching times as a function of gate resistor t = f(RG)
1.00 t (ms)

MOSFET

tdoff

tdoff

tdon
0.10

tdon

0.10

tf tr
0.01 0.01

tr

tf

0.00 0 10 20 30 40 50 I C (A) 60

0.00 0 5 10 15 20 25 30 R G ( Ω ) 35

With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 8 ? Rgoff = 8 ?

With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 30 A

Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic)
0.010 t rr(ms) 0.009 0.008 0.007 0.006 0.005 0.004 0.003

FRED

Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon)
t rr(ms) 0.016

FRED

trr High T trr Low T

0.014

0.012

trr High T
0.010

trr Low T
0.008

0.006

0.004 0.002 0.001 0.000 0 10 20 30 40 50 I C (A) 60 0.002

0.000 0 5 10 15 20 25

30 R gon ( Ω ) 35

At Tj = VCE = VGE = Rgon =

25/125 350 ±15 8

°C V V ?

At Tj = VR = IF = VGE =

25/125 350 30 ±15

°C V A V

copyright Vincotech

8

Revision: 5

FZ06NPA045FP
preliminary datasheet

Buck
Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC)
0.12

FRED

Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon)
Qrr (mC) 0.12

FRED

Qrr (mC)

0.10

Qrr Low T

0.1

Qrr Low T Qrr High T

0.08

Qrr High T

0.08

0.06

0.06

0.04

0.04

0.02

0.02

0.00

0 10 20 30 40 50 I C (A) 60 0 5 10 15 20 25 30 R g on ( Ω) 35

At 0 At Tj = VCE = VGE = Rgon =

25/125 350 ±15 8

°C V V ?

At Tj = VR = IF = VGE =

25/125 350 30 ±15

°C V A V

Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC)
45 IrrM (A) 40 35 30 25 20 15 10

FRED

Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon)
IrrM (A) 60

FRED

IRRM Low T

50

IRRM Low T
40

IRRM High T

30

IRRM High T

20

10 5 0 0 10 20 30 40 50 I C (A) 60 0 0 5 10 15 20 25 30 R gon (W) 35

At Tj = VCE = VGE = Rgon =

25/125 350 ±15 8

°C V V ?

At Tj = VR = IF = VGE =

25/125 350 30 ±15

°C V A V

copyright Vincotech

9

Revision: 5

FZ06NPA045FP
preliminary datasheet

Buck
Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic)
16000 direc / dt (A/ms)

FRED

Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon)
20000 direc / dt (A/ms) 18000 16000 14000

FRED

14000

dIrec/dtLow T

12000

dIrec/dtLow T dIrec/dtHigh T

10000

dIrec/dtHigh T
12000 10000 8000

8000

dIo/dtLow T

di0/dtHigh T

6000

dI0/dtHigh T
6000

dI0/dtLow T

4000 4000 2000 2000 0 0 10 20 30 40 50 I C (A) 60 0 5 10 15 20 25 30 R gon (W) 35

0

At Tj = VCE = VGE = Rgon =

25/125 350 ±15 8

°C V V ?

At Tj = VR = IF = VGE =

25/125 350 30 ±15

°C V A V

Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp)
101

IGBT

Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp)
101

FRED

ZthJH (K/W)

100

10

-1

D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000
10-5 10-4 10-3 10-2 10-1 100

ZthJH (K/W)
100

10

-1

D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000
-5

10

-2

10-2

t p (s)

101 1

10

10

-4

10

-3

10

-2

10

-1

10

0

t p (s)

10 1

1

At D= RthJH =

tp / T 1.30 K/W

At D= RthJH =

tp / T 2.18 K/W

IGBT thermal model values R (C/W) 0.11 0.22 0.63 0.24 0.10 Tau (s) 9.8E+00 6.3E-01 1.2E-01 1.8E-02 1.3E-03

FRED thermal model values R (C/W) 0.13 0.43 0.90 0.55 0.18 Tau (s) 2.4E+00 2.6E-01 6.2E-02 7.7E-03 1.2E-03

copyright Vincotech

10

Revision: 5

FZ06NPA045FP
preliminary datasheet

Buck
Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th)
150 Ptot (W)

IGBT

Figure 22 Collector current as a function of heatsink temperature IC = f(Th)
80 IC (A)

IGBT

70

125 60 100 50

75

40

30 50 20 25 10

0 0 50 100 150 T h ( o C) 200

0 0 50 100 150 T h ( o C) 200

At Tj =

150

°C

At Tj = VGE =

150 15

°C V

Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th)
Ptot (W) 90 80 70 60 50

FRED

Figure 24 Forward current as a function of heatsink temperature IF = f(Th)
40 IF (A)

FRED

30

20 40 30 20 10 0 0 50 100 150 T h ( o C) 200 0 0 50 100 150 T h ( o C) 200 10

At Tj =

175

°C

At Tj =

175

°C

copyright Vincotech

11

Revision: 5

FZ06NPA045FP
preliminary datasheet

Buck
Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE)
10
3

IGBT

Figure 26 Gate voltage vs Gate charge VGE = f(Qg)
16
VGE (V)

IGBT

IC (A)

14
10uS

10

2

12
100uS 100mS 10mS 1mS

200V 400V

DC

10

10

1

8

6

100

4

2

10-1

0
100 101 102

V CE (V)

103

0

50

100

150

Q g (nC)

200

At D= Th = VGE = Tj =

single pulse 80 ?C ±15 V Tjmax ?C MOSFET

At IG(REF)=1mA, RL=15?

Figure 27 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp)
101

Figure 28 Gate voltage vs Gate charge VGE = f(Qg)
10 9 8
VGE (V)

MOSFET

ZthJH (K/W)

120V
10
0

7

480V
6 5
10-1

4 3 2

10

-2

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

t p (s)

1
10 1
1

At D= RthJH =

0

tp / T 1.29 K/W

0

10

20

30

40

50 Q g (nC)

60

At IC =

18

A

MOSFET thermal model values R (C/W) 0.09 0.27 0.53 0.27 0.08 0.05 Tau (s) 9.2E+00 1.3E+00 2.1E-01 4.0E-02 4.8E-03 4.7E-04

copyright Vincotech

12

Revision: 5

FZ06NPA045FP
preliminary datasheet

Boost
Figure 1 Typical output characteristics IC = f(VCE)
80 IC (A)

IGBT

Figure 2 Typical output characteristics IC = f(VCE)
80 IC (A)

IGBT

70

70

60

60

50

50

40

40

30

30

20

20

10

10

0 0.0 0.5 1.0 1.5 2.0 2.5 V CE (V) 3.0

0 0.0 0.5 1.0 1.5 2.0 2.5 V CE (V) 3.0

At tp = Tj = VGE from

250 μs 25 °C 7 V to 17 V in steps of 1 V

At tp = Tj = VGE from

250 μs 125 °C 6 V to 16 V in steps of 1 V

Figure 3 Typical transfer characteristics IC = f(VGE)
45 IC (A) 40 35 30 25

IGBT

Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF)
60 IF (A) 55 50 45 40 35

FRED

Tj = Tjmax-25°C
20

30

Tj = Tjmax-25°C

Tj = 25°C
15 10 5 0 0 2 4 6 8 10 12 V GE (V) 14

25 20 15

Tj = 25°C
10 5 0 0 0.5 1 1.5 2 2.5 3 V F (V) 3.5

At tp = VCE =

250 10

μs V

At tp =

250

μs

copyright Vincotech

13

Revision: 5

FZ06NPA045FP
preliminary datasheet

Boost
Figure 5 Typical switching energy losses as a function of collector current E = f(IC)
2.5 E (mWs)

IGBT

Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG)
2.5 E (mWs)

IGBT

Eon High T

2

Eoff High T

2

Eoff High T Eon Low T

Eon High T
1.5 1.5

Eoff Low T

Eoff Low T Eon Low T

1

1

0.5

0.5

0 0 10 20 30 40 50 I C (A) 60

0 0 5 10 15 20 25 30 R G ( Ω ) 35

With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V Rgon = 8 ? Rgoff = 8 ? Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic)
E (mWs) 2.5

With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V IC = 30 A

IGBT

Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG)
E (mWs) 2 1.8 1.6 1.4

IGBT

Erec High T

2

1.5

1.2 1

Erec High T

1

0.8

Erec Low T
0.5

0.6

Erec Low T
0.4 0.2

0 0 10 20 30 40 50 I C (A) 60

0 0 5 10 15 20 25 30

R G (W) 35

With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V Rgon = 8 ?

With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V IC = 30 A

copyright Vincotech

14

Revision: 5

FZ06NPA045FP
preliminary datasheet

Boost
Figure 9 Typical switching times as a function of collector current t = f(IC)
10 t ( μs)

IGBT

Figure 10 Typical switching times as a function of gate resistor t = f(RG)
10 t ( μs)

IGBT

1

tdoff tf

1

tdoff

0.1

0.1

tdon tf tr

tdon

0.01

0.01

tr

0.001 0 10 20 30 40 50 I C (A) 60

0.001 0 5 10 15 20 25 30 R G (W) 35

With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V Rgon = 8 ? Rgoff = 8 ?

With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V IC = 30 A

Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic)
0.070 t rr(ms)

FRED

Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon)
t rr(ms) 0.080

FRED

trr High T

0.060

0.070

trr High T

0.060 0.050 0.050 0.040

trr Low T
0.030

0.040

trr Low T

0.030 0.020 0.020 0.010 I C (A) 0 10 20 30 40 50 60

0.010 R gon (W) 0 5 10 15 20 25 30 35

0.000

0.000

At Tj = VCE = VGE = Rgon =

25/125 350 15 8

°C V V ?

At Tj = VR = IF = VGE =

25/125 350 30 15

°C V A V

copyright Vincotech

15

Revision: 5

FZ06NPA045FP
preliminary datasheet

Boost
Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC)
9.00

FRED

Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon)
Qrr (mC) 7

FRED

Qrr (mC)

Qrr High T

8.00 7.00

Qrr High T

6

5 6.00 5.00 4

Qrr Low T
4.00 3.00 2 2.00 1.00 0.00 1 3

Qrr Low T

0 10 20 30 40 50 I C (A) 60 0 5 10 15 20 25 30 R g on ( Ω) 35

At 0 At Tj = VCE = VGE = Rgon =

25/125 350 15 8

°C V V ?

At Tj = VR = IF = VGE =

25/125 350 30 15

°C V A V

Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC)
160 IrrM (A)

FRED

Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon)
IrrM (A) 160

FRED

IRRM High T

140

140

IRRM High T
120 120

IRRM Low T
100 100

IRRM Low T

80

80

60

60

40

40

20

20

0 0 10 20 30 40 50 I C (A) 60

0 0 5 10 15 20 25 30 R gon (W) 35

At Tj = VCE = VGE = Rgon =

25/125 350 15 8

°C V V ?

At Tj = VR = IF = VGE =

25/125 350 30 15

°C V A V

copyright Vincotech

16

Revision: 5

FZ06NPA045FP
preliminary datasheet

Boost
Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic)
25000 direc / dt (A/ms)

FRED

Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon)
25000 direc / dt (A/ms)

FRED

20000

dIrec/dtLow T dIrec/dtHigh T

dIrec/dtLow T

20000

dIrec/dtHigh T
15000

15000

10000

10000

5000

dIo/dtLow T

5000

dI0/dtLow T di0/dtHigh T
0 0 10 20 30 40 50 I C (A) 60 0 0 5 10 15 20 25 30 R gon (W) 35

dI0/dtHigh T

At Tj = VCE = VGE = Rgon =

25/125 350 15 8

°C V V ? IGBT

At Tj = VR = IF = VGE =

25/125 350 30 15

°C V A V FRED

Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp)
101

Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp)
101

ZthJH (K/W)

100

10

-1

D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000

ZthJH (K/W)
100

10-1

D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000
-5 -4 -3 -2 -1 0

10

-2

10-2 10-5 10-4 10-3 10-2 10-1 100

t p (s)

10110

10

10

10

10

10

10

t p (s)

1010

1

At D= RthJH =

tp / T 1.11

K/W

At D= RthJH =

tp / T 2.32

K/W

IGBT thermal model values R (C/W) Tau (s)

FRED thermal model values R (C/W) Tau (s)

copyright Vincotech

17

Revision: 5

FZ06NPA045FP
preliminary datasheet

Boost
Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th)
160 Ptot (W)

IGBT

Figure 22 Collector current as a function of heatsink temperature IC = f(Th)
60 IC (A) 55 50

IGBT

140

120

45 40

100 35 80 30 25 60 20 40 15 10 20 5 0 0 50 100 150 T h ( o C) 200 0 0 50 100 150 T h ( o C) 200

At Tj =

175

?C

At Tj = VGE = FRED

175 15

?C V FRED

Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th)
80 Ptot (W)

Figure 24 Forward current as a function of heatsink temperature IF = f(Th)
30 IF (A) 25 20 15 10 5 0

70

60

50

40

30

20

10

0 0 50 100 150 Th ( o C) 200

0

50

100

150

Th ( o C)

200

At Tj =

150

?C

At Tj =

150

?C

copyright Vincotech

18

Revision: 5

FZ06NPA045FP
preliminary datasheet

Boost
Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF)
30 IF (A)

Boost Inverse Diode

Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp)

Boost Inverse Diode

25

20

15

Tj = 25°C
10

ZthJC (K/W)

Tj = Tjmax-25°C
5

D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000
14 VF (V) 16 t p (s)

0 0 2 4 6 8 10 12

At tp =

250

μs

At D= RthJH =

tp / T 4.36

K/W

Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th)
100 Ptot (W)

Boost Inverse Diode

Figure 28 Forward current as a function of heatsink temperature IF = f(Th)
10 IF (A)

Boost Inverse Diode

80

8

60

6

40

4

20

2

0 0 50 100 150 Th ( o C) 200

0 0 50 100 150 Th ( o C) 200

At Tj = 150 ?C

At Tj = 150 ?C

copyright Vincotech

19

Revision: 5

FZ06NPA045FP
preliminary datasheet

Thermistor
Figure 1 Typical NTC characteristic as a function of temperature RT = f(T)
25000

Thermistor

Figure 2 Typical NTC resistance values

Thermistor

NTC-typical temperature characteristic

R(T ) = R25 ? e

? ? ?? ? B25/100?? 1 ? 1 ? ? ? T T ?? ? 25 ? ?? ?

[Ω]

20000

15000

10000

5000

K?
0 25

50

75

100

125

T (°C)

150

copyright Vincotech

20

Revision: 5

FZ06NPA045FP
preliminary datasheet

Switching Definitions BUCK MOSFET
General conditions = 125 °C Tj = 8? Rgon IGBT Rgoff IGBT = 8? Figure 1 Output inverter IGBT Figure 2 Output inverter IGBT

Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff)
140 120 100 VGE 90% 80 60 % 40 20 0 IC 1% -20 -40 -0.2 VCE 90%

Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon)
200 180

tdoff VCE

160 140 120 % 100

IC

VCE

tEoff

VGE IC

80 60 40 20 VGE 0 -20 VGE10%

tdon

Ic10% VCE3%

tEon
2.9 2.95 3 3.05 time(us) 3.1 3.15 3.2

-0.1

0

0.1

0.2 time (us)

0.3

0.4

0.5

0.6

VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = Figure 3

-15 15 350 42 0.24 0.31

V V V A μs μs Output inverter IGBT

VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = Figure 4

-15 15 350 42 0.07 0.12

V V V A μs μs Output inverter IGBT

Turn-off Switching Waveforms & definition of tf
140 120 IC 100 80 %60 40 20 0 IC10% IC 90%

Turn-on Switching Waveforms & definition of tr
200

fitted VCE

180 160 140 120 IC 60% IC 40% 100 % 80 60 40 20 0 0.3 time (us) 0.35 0.4 -20 3 3.02 3.04 3.06 3.08 3.1 3.12 VCE IC90%

tr

I
IC10%

tf
-20 0.2 0.25

time(us) 3.14

VC (100%) = IC (100%) = tf =

350 42 0.006

V A μs

VC (100%) = IC (100%) = tr =

350 42 0.005

V A μs

copyright Vincotech

21

Revision: 5

FZ06NPA045FP
preliminary datasheet

Switching Definitions BUCK MOSFET
Figure 5 Turn-off Switching Waveforms & definition of tEoff
120 % 100

Output inverter IGBT

Figure 6 Turn-on Switching Waveforms & definition of tEon
180

Output inverter IGBT

Eoff

%
140

80

Eon
60 100

40

60

20

Poff
0 VGE90% -20 -0.2

20

VGE10%

VCE3%

Pon

tEoff
0 0.1 0.2 time (us) 0.3

IC 1%
0.4 0.5 -20 2.95 3 3.05

tEon
3.1 3.15 time(us) 3.2 3.25 3.3

-0.1

Poff (100%) = Eoff (100%) = tEoff =

14.72 0.31 0.31

kW mJ μs

Pon (100%) = Eon (100%) = tEon =

14.72 0.11 0.12

kW mJ μs

Figure 7 Turn-off Switching Waveforms & definition of trr
120

Output inverter IGBT

Figure 8

Output inverter FRED

Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr)
150 125

Id
80 trr 40

100 75 50

Id

Qrr

Vd

%

0 IRRM10% -40 IRRM90% IRRM100%

tQrr % 25

fitted

0 -25

-80

-50 -75

-120 3.05

-100 3.07 3.09 time(us) 3.11 3.13 3.15 3 3.05 3.1 3.15 time(us) 3.2

Vd (100%) = Id (100%) = IRRM (100%) = trr =

350 42 -31 0.008

V A A μs

Id (100%) = Qrr (100%) = tQrr =

42 0.09 0.02

A μC μs

copyright Vincotech

22

Revision: 5

FZ06NPA045FP
preliminary datasheet

Measurement circuits
Figure 11 BUCK stage switching measurement circuit Figure 12 BOOST stage switching measurement circuit

Cg is included in the module

copyright Vincotech

23

Revision: 5

FZ06NPA045FP
preliminary datasheet

Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking
Version without thermal paste 12mm housing Ordering Code 10-FZ06NPA045FP-P967F in DataMatrix as P967F in packaging barcode as P967F

Outline

Pinout

copyright Vincotech

24

Revision: 5

FZ06NPA045FP
preliminary datasheet

PRODUCT STATUS DEFINITIONS Datasheet Status Product Status Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.

Target

Formative or In Design

Preliminary

First Production

Final

Full Production

DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

copyright Vincotech

25

Revision: 5

FZ06NPA045FP
preliminary datasheet

flowNPC 0
BUCK = = = =

NPC Application
General conditions + 15 V - 15 V 8? 8? VGEon VGEoff Rgon Rgoff BOOST = = = =

600V/50A & 45A PS*

VGEon VGEoff Rgon Rgoff Figure 1.

Vout= 230 VAC

15 V 0V 8? 8? Buck FRED

Buck MOSFET

Figure 2. Typical average static loss as a function of output current IoRMS Ploss=f(Iout)
50 Ploss (W) 45

Typical average static loss as a function of of output current IoRMS Ploss=f(Iout)
45 Ploss (W)

40

φ=0?

φ=90?
40 35

35

30 30 25 25 20 20 15 15 φ=0?

φ=180?
10 10 5

5

φ=180?
0 0 10 20 30 40 50 I (A) out 60 0 0 10 20 30 40 50 I out (A) 60

Conditions: parameter:

Tj= φ

125 from in

°C 0° 12 steps Buck MOSFET to 180°

Conditions: parameter:

Tj= φ

125 from in

°C 0° 12 steps Buck FRED to 180°

Figure 3. Typical average static loss as a function of phase displacement φ Ploss=f(φ)
45 Ploss (W)

Figure 4. Typical average static loss as a function of phase displacement φ Ploss=f(φ)
50 Ploss (W)

IoutRMS=Imax

40

45 40 35

35

30

IoutRMS=Imax
25

30 25

20 20 15 15 10 10 5

5

IoutRMS=6%Imin
0 0 20 40 60 80 100 120 140 160 180 φ(? ) 200

IoutRMS=6% Imax
0 0 20 40 60 80 100 120 140 160 180 φ(? ) 200

Conditions: parameter:

Tj= IoRMS

125 from in steps of

°C 3,33 A 7 A to 50 A

Conditions: parameter:

Tj= IoRMS

125 from in steps of

°C 3,33 A 7 A to 50 A

copyright Vincotech

1

Revision: 4

FZ06NPA045FP
preliminary datasheet

flowNPC 0
Figure 5. Typical average switching loss as a function of phase displacement φ Ploss=f(φ)
Ploss (W) 3,5 IoutRMS=Imax

NPC Application
Buck MOSFET Figure 6.

600V/50A & 45A PS*
Buck FRED

Typical average switching loss as a function of phase displacement φ Ploss=f(φ)
Ploss (W) 0,20 0,18 0,16 0,14 IoutRMS=Imax 0,12

3,0

2,5

2,0 0,10 1,5 0,08 0,06 1,0 0,04 0,5 IoutRMS=6% Imax 0,02

IoutRMS=6% Imax
0,0 0 20 40 60 80 100 120 140 160 φ(? ) 180 200

0,00 0 20 40 60 80 100 120 140 160 180 φ(? ) 200

Conditions:

Tj= fsw= DC link= IoRMS

125 20 700 from in steps of

°C kHz V 3,33 A 7 A Buck MOSFET to 50 A

Conditions:

Tj= fsw= DC link= IoRMS

125 20 700 from in steps of

°C kHz V 3,33 A 7 A Buck FRED to 50 A

parameter:

parameter:

Figure 7. Typical total loss as a function of phase displacement φ and output current IoRMS Ploss=f(IoRMS;φ)
P loss (W)

Figure 8. Typical total loss as a function of phase displacement φ and output current IoRMS Ploss=f(IoRMS;φ)

IoutR

47 43

P loss (W)

47 43

0-5

5-10

40 37

0-5

5-10

40 37 33

10-15

15-20

33
10-15 15-20

30 27
20-25 25-30

30 27
20-25 25-30

23 20 17

23 20

30-35

35-40

30-35

35-40

17 13 10

13 10
40-45 45-50

7 3 105 120 135 150 165 180

40-45

45-50

7 3 105 120 135 150 165 180

0

15

30

45

60

75 φ(? )

90

0

15

30

45

60

75 90 φ(? )

Conditions:

Tj= DC link= fsw=

125 700 20

°C V kHz

Conditions:

Tj= DC link= fsw=

125 700 20

°C V kHz

copyright Vincotech

2

Revision: 4

IoutR

50

50

FZ06NPA045FP
preliminary datasheet

flowNPC 0
Figure 9.

NPC Application
for Buck MOSFET+FRED Figure 10.

600V/50A & 45A PS*
for Buck MOSFET+FRED

Typical available output current as a function of phase displacement φ Iout=f(φ)
70 Iout (A)

Typical available output current as a function of switching frequency fsw Iout=f(fsw)
70 Iout (A) Th=50°C 60

60 Th=50°C 50

50

40 Th=100°C 30

40

30 Th=100°C

20

20

10

10

0 0 15 30 45 60 75 90 105 120 135 150 165 φ 180 0 1 10 fsw (kHz) 100

Conditions: parameter:

Tj= Tjmax-25 °C DC link= 700 V Heatsink temp. 50 °C to Th from in 10 °C

fsw=

20 kHz

Conditions: parameter:

Tj= Tjmax-25 °C DC link= Heatsink temp. Th from in 700 50 10 V °C to °C 100 steps

φ= 0 °

100 steps

°C

°C

Figure 11. fsw and phase displacement φ Iout=f(fsw,φ)
I out (A)

for Buck IGBT+FRED

Typical available 50Hz output current as a function of

180 165 150

φ

60-65 55-60 50-55 45-50 40-45 35-40 30-35

135 120 105 90 75 60 45

25-30 30 15 0 128

fsw (kHz)

2

4

8

16

32

64

Conditions:

Tj= Tjmax-25 °C DC link= Th= 700 80 V °C

copyright Vincotech

3

Revision: 4

FZ06NPA045FP
preliminary datasheet

flowNPC 0
Figure 12. Typical average static loss as a function of output current Ploss=f(Iout)
35 Ploss (W)

NPC Application
Boost IGBT Figure 13.

600V/50A & 45A PS*
Boost FRED

Typical average static loss as a function of output current Ploss=f(Iout)
80 Ploss (W)

φ=0?

φ=180?

70

30 60 25 50 20 40 15 30

10

20

5

φ=180?

10 φ=0?

0 0 10 20 30 40 50 Iout (A) 60

0 0 10 20 30 40 50 Iout (A) 60

Conditions: parameter:

Tj= φ

125 from in

°C 0° 12 to steps 180?

Conditions: parameter:

Tj= φ

125 from in

°C 0° 12 to steps 180?

Figure 14. Typical average static loss as a function of phase displacement Ploss=f(φ)
35 Ploss (W)

Boost IGBT

Figure 15. Typical average static loss as a function of phase displacement Ploss=f(φ)
80 Ploss (W)

Boost FRED

FRED D1
IoutRMS=Imax

IoutRMS=Imax

30

70

60 25 50 20 40 15 30 10 20

5

10

IoutRMS=6% Imax
0 0 20 40 60 80 100 120 140 160 180 φ(? ) 200 0 0 20 40 60 80 100 120 140

IoutRMS=6% Imax
160 180 φ(? ) 200

Conditions: parameter:

Tj= IoRMS

125 from in steps of

°C 3 A 7 A to 50 A

Conditions: parameter:

Tj= IoRMS

125 from in steps of

°C 3 A 7 A to 50 A

copyright Vincotech

4

Revision: 4

FZ06NPA045FP
preliminary datasheet

flowNPC 0
Figure 16. Typical average switching loss as a function of phase displacement Ploss=f(φ)
Ploss (W) 35

NPC Application
Boost IGBT Figure 17.

600V/50A & 45A PS*
Boost FRED

Typical average switching loss as a function of phase displacement Ploss=f(φ)
Ploss (W) 25

IoutRMS=Imax

IoutRMS=Imax 20

30

25 15 20

15

10

10 5 5

IoutRMS=6% Imax

IoutRMS=6% Imax
0 0 20 40 60 80 100 120 140 160 φ(? ) 180 200

0 0 20 40 60 80 100 120 140 160 180 φ(? ) 200

Conditions: parameter:

Tj= DC link= IoRMS

125 700 from in steps of

°C V 3 A 7 A

fsw= to A

20 kHz 50 A

Conditions: parameter:

Tj= DC link= IoRMS

125 700 from in steps of

°C V 3 A 7 A

fsw= to A

20 kHz 50 A

Figure 18. Typical total loss as a function of phase displacement and IoutRMS Ploss=f(IoRMS;φ)

Boost IGBT

Figure 19. Typical total loss as a function of phase displacement and IoutRMS Ploss=f(IoRMS;φ)

Boost FRED

IoutR

50

P loss (W)
36-39 33-36 30-33 27-30 24-27 21-24 18-21 15-18 12-15 9-12 6-9 3-6 0-3

47 43 40 37 33 30 27 23 20 17 13 10 7 3 105 120 135 150 165 180 φ(? )

P loss (W)
60-66 54-60 48-54 42-48 36-42 30-36 24-30 18-24 12-18 6-12 0-6

IoutR

50 47 43 40 37 33 30 27 23 20 17 13 10 7 3 105 120 135 150 165 180

0

15

30

45

60

75

90

0

15

30

45

60

75 90 φ(? )

Conditions:

Tj= DC link= fsw=

125 700 20

°C V kHz

Conditions:

Tj= DC link= fsw=

125 700 20

°C V kHz

copyright Vincotech

5

Revision: 4

MS

FZ06NPA045FP
preliminary datasheet

flowNPC 0
Figure 20. Typical available output current as a function of of phase displacement Iout=f(φ)
60 Iout (A)

NPC Application
Boost IGBT+FRED Figure 21. Typical available output current as a function of switching frequency Iout=f(fsw)
60 Iout (A)

600V/50A & 45A PS*
Boost IGBT+FRED

50

50

Th=50°C

40

40 Th=50°C

30

30

20

20 Th=100°C Th=100°C

10

10

0 0 15 30 45 60 75 90 105 120 135 150 165 180 φ(? ) 0 1 10 100 f sw (kHz) 1000

Conditions: parameter:

Tj= Tjmax-25 °C DC link= 700 V Th from in Heatsink temp. 50 °C to 10 °C

fsw=

20 kHz

Conditions: parameter:

Tj= Tjmax-25 °C DC link= 700 V Th from in Heatsink temp. 50 °C to 10 °C 100 steps

φ= 90°

100 steps

°C

°C

Figure 22.

Boost IGBT+FRED

Typical available 50Hz output current as a function of fsw and phase displacement Iout=f(fsw,φ)
I out (A)
180 165 150 0-5 5-10 135 120 10-15 15-20 105 20-25 25-30 90 75 30-35 35-40 60 45 30 50-55 55-60 15 0 128

φ

40-45

45-50

2

4

8

16

32

64

fsw (kHz)

Conditions:

Tj= Tjmax-25 °C DC link= Th= 700 80 V °C

copyright Vincotech

6

Revision: 4

FZ06NPA045FP
preliminary datasheet

flowNPC 0
Figure 23. Typical available output current as a function of heat sink temperature Iout=f(Th)
60 Iout (A)

NPC Application
per MODULE Figure 24. Typical available output current as a function of phase displacement Iout=f(φ)
60 Iout (A)

600V/50A & 45A PS*
per MODULE

50

50

Th=50°C 40 2kHz 40

30

30

20

128kHz

20

Th=100°C 10 10

φ 0 60 65 70 75 80 85 90
o 95T h ( C) 100

0 0 15 30 45 60 75 90 105 120 135 150 165 180

Conditions:

Tj= Tjmax-25 °C DC link= φ= 700 V 0° Switching freq. kHz to 128 kHz

Conditions:

Tj= Tjmax-25 °C DC link= fsw= 700 V 20 kHz Heatsink temp. 50 10 °C to °C 100 steps per MODULE

parameter:

parameter: Th from in Figure 26.

fsw from 2 in steps of factor 2 Figure 25.

per MODULE

Typical available output current as a function of switching frequency Iout=f(fsw)
60 Iout (A) Th=50°C 50

Typical available 50Hz output current as a function of fsw and phase displacement Iout=f(fsw,φ)
180

φ

I out (A)

165 150

60-65 40 55-60

135 120

50-55 105 30 Th=100°C 20 45-50 90 40-45 75 35-40 30-35 10 25-30 60 45 30 15 0 1 10 f sw (kHz) 100 0 128

f sw (kHz)

2

4

8

16

32

64

Conditions: parameter: Th from in 50 10

Tj= Tjmax-25 °C DC link= 700 V Heatsink temp. °C to °C 100 steps

φ=



Conditions:

Tj= Tjmax-25 °C DC link= Th= 700 80 V °C

copyright Vincotech

7

Revision: 4

FZ06NPA045FP
preliminary datasheet

flowNPC 0
Figure 27. Typical efficiency as a function of output power η=f(Pout)
100,0 efficiency (%)

NPC Application
per MODULE Figure 28.

600V/50A & 45A PS*
per MODULE

Typical efficiency as a function of output power η=f(Pout)
efficiency (%) 100,0

99,0 φ=0?

99,0

2kHz

128kHz
98,0 98,0

φ=180?

Pout (kVA) 97,0 0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0 97,0 0,0 2,0 4,0 6,0 8,0 10,0

Pout (kVA) 12,0 14,0

Conditions:

Tj= fsw= DC link=

125 20

°C kHz

Conditions: parameter: to 180 °

Tj= DC link=

125 700

°C V 128

φ= 0 °

parameter:

700 V phase displacement φ from 0° in steps of 30 °

Switching freq. fsw from 2 kHz to in steps of factor 2

kHz

Figure 29. Typical available output power as a function of heat sink temperature Pout=f(Th)
14 Pout (kW)

per MODULE

Figure 30. Typical loss distribution as a function of output current Pout=f(Th)
100,0

per MODULE

Loss distribution 90,0 12 80,0 10 T1 Stat. 2kHz 8 D3-5 Sw. D3-5 Stat. 6 128kHz 4 T3 Sw. T3 Stat. 70,0 60,0 50,0 40,0 30,0 20,0 2 10,0 0,0 60 65 70 75 80 85 90 95 T h ( o C) 100 3 7 10 13 17 20 23 27 30 33 37 40 43 47 50 Iout (A)

0

Conditions:

Tj= Tjmax-25 °C DC link= 700 φ= 0 Switching freq. fsw from 2 kHz to in steps of factor 2

Conditions: V ° 128 kHz

Tj= fsw= DC link= φ=

125 20 700 0°

°C kHz V

parameter:

copyright Vincotech

8

Revision: 4

FZ06NPA045FP
preliminary datasheet

flowNPC 0
Figure 31. Typical relativ loss distribution as a function of output current Pout=f(Th)
1,0 0,9 0,8 T1 Stat. D3-5 Sw. D3-5 Stat. T3 Sw. T3 Stat. 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 3 7 10 13 17 20 23 27 30 33 37 40

NPC Application
per MODULE Figure 32.

600V/50A & 45A PS*
per MODULE

Loss distribution

43

47

50

Iout (A)

Conditions:

Tj= fsw= DC link= φ=

125 20 700 0°

°C kHz V

Cg is included in the module

copyright Vincotech

9

Revision: 4

FZ06NPA045FP
preliminary datasheet

PRODUCT STATUS DEFINITIONS Datasheet Status Product Status Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.

Target

Formative or In Design

Preliminary

First Production

Final

Full Production

DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

copyright Vincotech

10

Revision: 4

FZ06NPA070FP
preliminary datasheet

flowNPC 0
Features
● *PS: 70A parallel switch (60A PT and 99m?) ● neutral point clamped inverter ● reactive power capability ● SiC buck diode ● low inductance layout

600V/75A & 70A PS*
flow0 12mm housing

Target Applications
● solar inverter ● UPS

Schematic

Types
● FZ06NPA070FP

Maximum Ratings
Tj=25°C, unless otherwise specified

Parameter

Symbol

Condition

Value

Unit

Buck IGBT
Collector-emitter break down voltage DC collector current Repetitive peak collector current Power dissipation per IGBT Gate-emitter peak voltage Short circuit ratings Maximum Junction Temperature VCE IC ICpulse Ptot VGE tSC VCC Tjmax Tj≤150°C VGE=15V Tj=Tjmax tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 600 44 59 240 71 108 ±20 5 390 150 V A A W V μs V °C

Buck Diode
Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation per Diode Maximum Junction Temperature VRRM IF IFRM Ptot Tjmax Tj=25°C Tj=Tjmax tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tc=100°C Th=80°C Tc=80°C 600 27 37 105 50 75 175 V A A W °C

copyright Vincotech

1

Revision: 5

FZ06NPA070FP
preliminary datasheet

Maximum Ratings
Tj=25°C, unless otherwise specified

Parameter

Symbol

Condition

Value

Unit

Buck MOSFET
Drain to source breakdown voltage DC drain current Pulsed drain current Power dissipation Gate-source peak voltage Maximum Junction Temperature VDS ID IDpulse Ptot Vgs Tjmax Tj=Tjmax tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tc=25°C Th=80°C Tc=80°C 600 16 21 93 54 97 ±20 150 V A A W V °C

Boost IGBT
Collector-emitter break down voltage DC collector current Repetitive peak collector current Power dissipation per IGBT Gate-emitter peak voltage Short circuit ratings Maximum Junction Temperature VCE IC ICpuls Ptot VGE tSC VCC Tjmax Tj≤150°C VGE=15V Tj=Tjmax tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 600 57 75 225 85 129 ±20 6 360 175 V A A W V μs V °C

Boost Inverse Diode
Peak Repetitive Reverse Voltage DC forward current Power dissipation per Diode Maximum Junction Temperature VRRM IF Ptot Tjmax Tc=25°C Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 600 2 21 V A W °C

150

Boost Diode
Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation per Diode Maximum Junction Temperature VRRM IF IFRM Ptot Tjmax Tj=25°C Tj=Tjmax tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 1200 20 28 70 34 52 150 V A A W °C

copyright Vincotech

2

Revision: 5

FZ06NPA070FP
preliminary datasheet

Maximum Ratings
Tj=25°C, unless otherwise specified

Parameter

Symbol

Condition

Value

Unit

Thermal Properties
Storage temperature Operation temperature under switching condition Tstg Top -40…+125 -40…+(Tjmax - 25) °C °C

Insulation Properties
Insulation voltage Creepage distance Clearance Vis t=2s DC voltage 4000 min 12,7 min 12,7 V mm mm

copyright Vincotech

3

Revision: 5

FZ06NPA070FP
preliminary datasheet

Characteristic Values
Parameter Symbol
VGE [V] or VGS [V]

Conditions
Vr [V] or VCE [V] or VDS [V] IC [A] or IF [A] or ID [A] Tj Min

Value
Typ Max

Unit

Buck IGBT *
Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode Gate-emitter leakage current Integrated Gate resistor Input capacitance ** Output capacitance Reverse transfer capacitance Gate charge ** Thermal resistance chip to heatsink per chip
* see dinamic characteristic at Buck MosFET **additional value stands for built-in capacitor

VGE(th) VCE(sat) ICES IGES Rgint Cies Coss Crss QGate RthJH

VCE=VGE 15 0 ±20 600 0

0.00025 70

Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C

4.5 1

5.2 2.32 2.09

7 2.9 250 300

V V uA nA ? nF pF

none 4+4,7 f=1MHz 0 25 Tj=25°C 400 200 ±15 Thermal grease thickness≤50um λ = 1 W/mK Tj=25°C 225+70 0.99

nC K/W

Buck Diode
Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip VF IRRM trr Qrr di(rec)max /dt Erec RthJH Thermal grease thickness≤50um λ = 1 W/mK Rgon=8 ? 350 40 24 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 1.48 1.58 42 34 9 9 0.121 0.121 13108 10427 0.011 0.012 1.91 1.8 V A ns μC A/μs mWs K/W

Buck MOSFET
Static drain to source ON resistance Gate threshold voltage Gate to Source Leakage Current Zero Gate Voltage Drain Current Turn On Delay Time Rise Time Turn off delay time Fall time Turn-on energy loss per pulse Turn-off energy loss per pulse Total gate charge Gate to source charge Gate to drain charge Input capacitance Output capacitance Thermal resistance chip to heatsink per chip
** see schematic of the Gate-complex at characteristic figures

Rds(on) V(GS)th Igss Idss td(ON) tr td(OFF) tf Eon Eoff Qg Qgs Qgd Ciss Coss RthJH f=1MHz Thermal grease thickness≤50um λ = 1 W/mK Rgon=8 ? ** Rgoff=8 ? **

10 VDS=VGS 20 0 0 600

18 0.001

±15

350

40

Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C

2.1

109 219 3

m? 3.6 200 60 V nA uA

92 101 6 6 208 210 9 5 0.066 0.096 0.100 0.225 60 80

ns

mWs

±15

350

40

Tj=25°C

14 20 2800

nC

0

100

Tj=25°C 130 1.29

pF

K/W

copyright Vincotech

4

Revision: 5

FZ06NPA070FP
preliminary datasheet

Characteristic Values
Parameter Symbol
VGE [V] or VGS [V]

Conditions
Vr [V] or VCE [V] or VDS [V] IC [A] or IF [A] or ID [A] Tj Min

Value
Typ Max

Unit

Boost IGBT
Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off incl diode Gate-emitter leakage current Integrated Gate resistor Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy loss per pulse Turn-off energy loss per pulse Input capacitance Output capacitance Reverse transfer capacitance Gate charge Thermal resistance chip to heatsink per chip VGE(th) VCE(sat) ICES IGES Rgint td(on) tr td(off) tf Eon Eoff Cies Coss Crss QGate RthJH Thermal grease thickness≤50um λ = 1 W/mK 15 480 75 Tj=25°C f=1MHz 0 25 Tj=25°C Rgon=8 ? Rgoff=8 ? ±15 350 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C VCE=VGE 15 0 20 600 0 0.0012 70 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 5 1 5.8 1.49 1.6 6.5 2.1 0.03 650 none 37 35 13 16 459 500 83 106 0.81 1.11 1.35 1.71 4620 288 137 470 1.11 nC K/W pF V V mA nA ?

ns

mWs

Boost Inverse Diode
Diode forward voltage Thermal resistance chip to heatsink per chip VF RthJH Thermal grease thickness≤50um λ = 1 W/mK 20 Tj=25°C Tj=125°C 9.07 9.43 4.36 V K/W

Boost Diode
Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovery energy Thermal resistance chip to heatsink per chip VF Ir IRRM trr Qrr di(rec)max /dt Erec RthJH Thermal grease thickness≤50um λ = 1 W/mK Rgon=8 ? 350 40 1200 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1.5 2.44 2.01 80 100 33 109 2.7 6 11226 8793 0.61 1.52 2.04 3.5 100 V μA A ns μC A/μs mWs K/W

Thermistor
Rated resistance* Power dissipation B-value
* see details on Thermistor charts on Figure 2. R25 R100 Tol. ±13% Tol. ±5% Tj=25°C Tj=100°C

19.1 1411

22 1486 210 4000

24.9 1560

k? ? mW K

P B(25/100) Tol. ±3%

Tj=25°C Tj=25°C

copyright Vincotech

5

Revision: 5

FZ06NPA070FP
preliminary datasheet

Buck
Figure 1 Typical output characteristics IC = f(VCE)
100 IC (A)

MOSFET

Figure 2 Typical output characteristics IC = f(VCE)
100 IC (A)

MOSFET

80

80

60

60

40

40

20

20

0 0 1 2 3 4 V CE (V) 5

0 0 1 2 3 4 V CE (V) 5

At tp = Tj = VGE from

250 μs 25 °C 3 V to 19 V in steps of 2 V

At tp = Tj = VGE from

250 μs 125 °C 3 V to 19 V in steps of 2 V

Figure 3 Typical transfer characteristics IC = f(VGE)
30 IC (A)

MOSFET

Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF)
50 IF (A)

FRED

Tj = Tjmax-25°C

25

40

Tj = 25°C
20 30 15

Tj = Tjmax-25°C

Tj = 25°C
10

20

5

10

0 0 1 2 3 4 5 6 V GE (V) 7

0 0 0.5 1 1.5 2 2.5 3 V F (V) 3.5

At tp = VCE =

250 10

μs V

At tp =

250

μs

copyright Vincotech

6

Revision: 5

FZ06NPA070FP
preliminary datasheet

Buck
Figure 5 Typical switching energy losses as a function of collector current E = f(IC)
1.000 E (mWs) 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0.000 0 10 20 30 40 50 60 70 I C (A) 80

MOSFET

Figure 6 Typical switching energy losses as a function of IGBT gate resistor E = f(RG)
E (mWs) 0.500 0.450 0.400 0.350 0.300 0.250 0.200 0.150 0.100 0.050 0.000 0 8 16 24 32

MOSFET

Eon High T

Eoff High T

Eoff High T

Eoff Low T Eon High T

Eoff Low T Eon Low T

Eon Low T

R G (W)

40

With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 8 ? Rgoff= 8 ?

With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = 40 A

Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic)
0.040 E (mWs)

FRED

Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG)
E (mWs) 0.025

FRED

0.035

0.020 0.030

Erec High T
0.025 0.015

0.020 0.010

0.015

Erec Low T

Erec High T
0.010 0.005 0.005

Erec Low T

0.000 0 10 20 30 40 50 60 70I C (A) 80

0.000 0 5 10 15 20 25 30R G (W) 35

With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 8 ?

With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 40 A

copyright Vincotech

7

Revision: 5

FZ06NPA070FP
preliminary datasheet

Buck
Figure 9 Typical switching times as a function of collector current t = f(IC)
1.00 t (ms)

MOSFET

Figure 10 Typical switching times as a function of gate resistor t = f(RG)
1.00 t (ms)

MOSFET

tdoff

tdon tdoff

0.10

tdon

0.10

tr
0.01 0.01

tr tf

tf

0.00 0 10 20 30 40 50 60 70 I C (A) 80

0.00 0 5 10 15 20 25 30 R G (W) 35

With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 8 ? Rgoff = 8 ?

With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 40 A

Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic)
0.012 t rr(ms)

FRED

Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon)
t rr(ms) 0.016

FRED

0.014

0.010

trr High T

trr High T
0.012 0.008

trr Low T
0.010

trr Low T

0.006

0.008

0.006 0.004 0.004 0.002 0.002

0.000 0 10 20 30 40 50 60 70I C (A) 80

0.000 0 5 10 15 20 25 30

R gon (W)

35

At Tj = VCE = VGE = Rgon =

25/125 350 ±15 8

°C V V ?

At Tj = VR = IF = VGE =

25/125 350 40 ±15

°C V A V

copyright Vincotech

8

Revision: 5

FZ06NPA070FP
preliminary datasheet

Buck
Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC)
0.14

FRED

Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon)
0.18 0.16 0.14 0.12

FRED

Qrr (mC)

Qrr Low T Qrr High T

0.12

Qrr (mC)

0.10

Qrr High T Qrr Low T

0.08

0.1 0.08 0.06

0.06

0.04 0.04 0.02 0.02 0.00 0 10 20 30 40 50 60 70 I C (A) 80 0 5 10 15 20 25 30 R g on ( Ω) 35

At 0 At Tj = VCE = VGE = Rgon =

25/125 350 ±15 8

°C V V ?

At Tj = VR = IF = VGE =

25/125 350 40 ±15

°C V A V

Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC)
45 IrrM (A) 40 35 30 25 20 15 10

FRED

Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon)
IrrM (A) 60

FRED

IRRM Low T

IRRM Low T

50

40

IRRM High T
30

IRRM High T

20

10 5 0 0 10 20 30 40 50 60 I C (A) 70 80 0 0 5 10 15 20 25 30 R gon (W) 35

At Tj = VCE = VGE = Rgon =

25/125 350 ±15 8

°C V V ?

At Tj = VR = IF = VGE =

25/125 350 40 ±15

°C V A V

copyright Vincotech

9

Revision: 5

FZ06NPA070FP
preliminary datasheet

Buck
Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic)
16000 direc / dt (A/ms)

FRED

Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon)
20000 direc / dt (A/ms) 18000 16000 14000 12000 10000

FRED

14000

dIrec/dtLow T
12000

dIo/dtLow T
10000

dIrec/dtLow T

dIrec/dtHigh T

8000

di0/dtHigh T
6000 8000 6000 4000 4000 2000

dIrec/dtHigh T dI0/dtLow T
2000 0 0 10 20 30 40 50 60 70 I C (A) 80 0 5 10 15 20 25 30 R gon (W) 35

dI0/dtHigh T

0

At Tj = VCE = VGE = Rgon =

25/125 350 ±15 8

°C V V ?

At Tj = VR = IF = VGE =

25/125 350 40 ±15

°C V A V

Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp)
101

IGBT

Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp)
101

FRED

ZthJH (K/W)

10

0

10-1

D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000
10
-5

ZthJH (K/W)
100

10-1

D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000
10-4 10-3 10-2 10-1 100

10-2 10
-4

10-2 10
-3

10

-2

10

-1

10

0

t p (s)

10 1

1

10-5

t p (s)

1011

At D= RthJH =

tp / T 0.99 K/W

At D= RthJH =

tp / T 1.91 K/W

IGBT thermal model values R (C/W) 0.06 0.18 0.56 0.14 0.05 Tau (s) 9.7E+00 9.9E-01 1.6E-01 2.4E-02 1.6E-03

FRED thermal model values R (C/W) 0.10 0.32 0.91 0.38 0.21 Tau (s) 3.8E+00 5.7E-01 1.0E-01 1.4E-02 2.0E-03

copyright Vincotech

10

Revision: 5

FZ06NPA070FP
preliminary datasheet

Buck
Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th)
200 Ptot (W)

IGBT

Figure 22 Collector current as a function of heatsink temperature IC = f(Th)
90 IC (A) 80 70 60 50

IGBT

150

100 40 30 50 20 10 0 0 50 100 150 T h ( o C) 200 0 0 50 100 150 T h ( o C) 200

At Tj =

150

°C

At Tj = VGE =

150 15

°C V

Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th)
Ptot (W) 100 90 80 70 60

FRED

Figure 24 Forward current as a function of heatsink temperature IF = f(Th)
45 IF (A) 40 35 30 25

FRED

50 20 40 30 20 10 0 0 50 100 150 T h ( o C) 200 15 10 5 0 0 50 100 150 T h ( o C) 200

At Tj =

175

°C

At Tj =

175

°C

copyright Vincotech

11

Revision: 5

FZ06NPA070FP
preliminary datasheet

Buck
Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE)
10
3

IGBT

Figure 26 Gate voltage vs Gate charge VGE = f(Qg)
VGE (V)
VGE (V)

IGBT

15

16 14 12

IC (A)
10
2

100uS

120V 200V
DC 101

10
100m 10mS 1mS

480V 400V

10 8 6

100

5

4 2 0 0 10 50 20 30 100 40 50 150 60 200 70 80 250 90
Q g (nC) Q g (nC)

10-1

100 300

0
10
0

101

102

V CE (V)

103

0

At D= Th = VGE = Tj =

single pulse 80 ?C ±15 V Tjmax ?C MOSFET

At IG(REF)=1mA, RL=15?

Figure 27 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp)
101

Figure 28 Gate voltage vs Gate charge VGE = f(Qg)
10 9 8
VGE (V)

MOSFET

ZthJH (K/W)

120V
10
0

7

480V
6 5 4 3 2 1
10 1
1

10

-1

D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000
10
-5

10-2 10
-4

10

-3

10

-2

10

-1

10

0

t p (s)

At D= RthJH =

0

tp / T 1.29 K/W

0

10

20

30

40

50 Q g (nC)

60

At IC =

18

A

MOSFET thermal model values R (C/W) 0.09 0.27 0.53 0.27 0.08 0.05 Tau (s) 9.2E+00 1.3E+00 2.1E-01 4.0E-02 4.8E-03 4.7E-04

copyright Vincotech

12

Revision: 5

FZ06NPA070FP
preliminary datasheet

Boost
Figure 1 Typical output characteristics IC = f(VCE)
100 IC (A) 90 80 70 60 50 40 30 20 10 0 0.0 1.0 2.0 V CE (V) 3.0

IGBT

Figure 2 Typical output characteristics IC = f(VCE)
100 IC (A) 90 80 70 60 50 40 30 20 10 0 0.0 1.0 2.0 V CE (V)

IGBT

3.0

At tp = Tj = VGE from

250 μs 25 °C 7 V to 17 V in steps of 1 V

At tp = Tj = VGE from

250 μs 125 °C 6 V to 16 V in steps of 1 V

Figure 3 Typical transfer characteristics IC = f(VGE)
45 IC (A) 40 35 30 25

IGBT

Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF)
100 IF (A) 90 80 70 60 50

FRED

20

Tj = Tjmax-25°C
15

Tj = 25°C

40 30

Tj = Tjmax-25°C

10 5 0 0 2 4 6 8 10 12 V GE (V) 14

20 10 0 0 0.5 1 1.5 2 2.5 3 3.5 4 V F (V) 4.5 5

Tj = 25°C

At tp = VCE =

250 10

μs V

At tp =

250

μs

copyright Vincotech

13

Revision: 5

FZ06NPA070FP
preliminary datasheet

Boost
Figure 5 Typical switching energy losses as a function of collector current E = f(IC)
3 E (mWs)

IGBT

Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG)
3.5

IGBT

Eoff High T
2.5

E (mWs)

3

Eoff Low T
2.5 2

Eoff Low T Eon Low T

Eon High T
2

1.5

Eon Low T
1.5

Eoff High T

1 1

Eon High T

0.5

0.5

0 0 10 20 30 40 50 60 70 I (A) C 80

0 0 5 10 15 20 25 30 R G ( Ω ) 35

With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V Rgon = 8 ? Rgoff = 8 ? Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic)
2.5 E (mWs)

With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V IC = 40 A

IGBT

Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG)
2

IGBT

Erec High T

2

E (mWs)

1.8 1.6 1.4

Erec High T

1.5

1.2 1

1

0.8

Erec Low T
0.6 0.5 0.4 0.2 0 0 10 20 30 40 50 60 70 I C (A) 80 0 0 5 10 15 20 25

Erec Low T

30 R G ( Ω ) 35

With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V Rgon = 8 ?

With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V IC = 40 A

copyright Vincotech

14

Revision: 5

FZ06NPA070FP
preliminary datasheet

Boost
Figure 9 Typical switching times as a function of collector current t = f(IC)
10 t ( μs)

IGBT

Figure 10 Typical switching times as a function of gate resistor t = f(RG)
10 t ( μs)

IGBT

tdoff
1

tdoff tf

1

0.1

0.1

tf

tdon tr

tdon

0.01

0.01

tr

0.001 0 10 20 30 40 50 60 70 I C (A) 80

0.001 0 5 10 15 20 25 30 R G ( Ω ) 35

With an inductive load at Tj = 125 °C VCE = 350 V VGE = 15 V Rgon = 8 ? Rgoff = 8 ?

With an inductive load at Tj = 125 °C VCE = 350 V VGE = 15 V IC = 40 A

Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic)
0.120 t rr(ms)

FRED

Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon)
t rr(ms) 0.180 0.160 0.140

FRED

trr High T

trr High T

0.100

0.080

0.120 0.100

0.060 0.080

trr Low T
0.040 0.060

trr Low T
0.040 0.020 0.020 0.000 0 10 20 30 40 50 60 70I C (A) 80 0.000 0 5 10 15 20 25

30 R gon (W)

35

At Tj = VCE = VGE = Rgon =

25/125 350 15 8

°C V V ?

At Tj = VR = IF = VGE =

25/125 350 40 15

°C V A V

copyright Vincotech

15

Revision: 5

FZ06NPA070FP
preliminary datasheet

Boost
Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC)
10.00 9.00 8.00 7.00 6.00 5.00 4.00 3.00 2.00 1 1.00 0.00 0 At At Tj = VCE = VGE = Rgon = 10 20 30 40 50 60 70 I C (A) 80 0 0 5 10 15 20 25 30 R g on ( Ω) 35 5

FRED

Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon)
7

FRED

Qrr (mC)

Qrr (mC)

Qrr High T

Qrr High T

6

4

Qrr Low T

3

Qrr Low T
2

25/125 350 15 8

°C V V ?

At Tj = VR = IF = VGE =

25/125 350 40 15

°C V A V

Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC)
140 IrrM (A)

FRED

Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon)
IrrM (A) 160

FRED

IRRM High T

120

140

IRRM High T

IRRM Low T
100

120

IRRM Low T

100 80 80 60 60 40

40

20

20

0 0 10 20 30 40 50 60 I C (A) 70 80

0 0 5 10 15 20 25 30 R gon (W) 35

At Tj = VCE = VGE = Rgon =

25/125 350 15 8

°C V V ?

At Tj = VR = IF = VGE =

25/125 350 40 15

°C V A V

copyright Vincotech

16

Revision: 5

FZ06NPA070FP
preliminary datasheet

Boost
Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic)
14000 direc / dt (A/ms)

FRED

Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon)
16000

FRED

dIrec/dtLow T
12000

dIrec/dtHigh T
10000

direc / dt (A/ms)

14000

12000

dIrec/dtLow T
10000

8000 8000 6000

dIrec/dtHigh T

dIo/dtLow T
4000

6000

di0/dtHigh T
2000

4000

2000

dI0/dtHigh T

dI0/dtLow T

0 0 10 20 30 40 50 60 70 I C (A) 80

0 0 5 10 15 20 25 30 R gon (W) 35

At Tj = VCE = VGE = Rgon =

25/125 350 15 8

°C V V ? IGBT

At Tj = VR = IF = VGE =

25/125 350 40 15

°C V A V FRED

Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp)
101

Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp)
101

ZthJH (K/W)

100

10

-1

D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000

ZthJH (K/W)
100

10

-1

D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000
t p (s)

10-2 10-5 10-4 10-3 10-2 10-1 100

t p (s)

10-2 101 1 10-5 10-4 10-3 10-2 10-1 100

101 1

At D= RthJH =

tp / T 1.11

K/W

At D= RthJH =

tp / T 2.04

K/W

IGBT thermal model values R (C/W) 0.06 0.22 0.59 0.17 0.03 0.04 Tau (s) 9.9E+00 1.2E+00 1.4E-01 2.2E-02 2.7E-03 2.7E-04

FRED thermal model values R (C/W) 0.04 0.21 1.12 0.42 0.17 0.08 Tau (s) 9.8E+00 1.0E+00 1.5E-01 3.7E-02 4.4E-03 6.1E-04

copyright Vincotech

17

Revision: 5

FZ06NPA070FP
preliminary datasheet

Boost
Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th)
160 Ptot (W) IC (A)

IGBT

Figure 22 Collector current as a function of heatsink temperature IC = f(Th)
90 80 70 60

IGBT

140

120

100 50 80 40 60 30 40 20 10 0 0 50 100 150 T h ( o C) 200 0 50 100 150 T h ( o C) 200

20

0

At Tj =

175

?C

At Tj = VGE = FRED

175 15

?C V FRED

Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th)
80 Ptot (W)

Figure 24 Forward current as a function of heatsink temperature IF = f(Th)
40 IF (A)

70

35

60

30

50

25

40

20

30

15

20

10

10

5

0 0 50 100 150 Th ( o C) 200

0 0 50 100 150 Th ( o C) 200

At Tj =

150

?C

At Tj =

150

?C

copyright Vincotech

18

Revision: 5

FZ06NPA070FP
preliminary datasheet

Boost
Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF)
30 IF (A)

Boost Inverse Diode

Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp)

Boost Inverse Diode

25

20

15

ZthJC (K/W)

Tj = 25°C
10

Tj = Tjmax-25°C
5

D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000
16 t p (s)

0 0 2 4 6 8 10 12

14 VF (V)

At tp =

250

μs

At D= RthJH =

tp / T 4.36

K/W

Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th)
100 Ptot (W)

Boost Inverse Diode

Figure 28 Forward current as a function of heatsink temperature IF = f(Th)
12 IF (A)

Boost Inverse Diode

80

10

8 60 6 40 4

20

2

0 0 50 100 150 Th ( o C) 200

0 0 50 100 150 Th ( o C) 200

At Tj =

150

?C

At Tj =

150

?C

copyright Vincotech

19

Revision: 5

FZ06NPA070FP
preliminary datasheet

Thermistor
Figure 1 Typical NTC characteristic as a function of temperature RT = f(T)
R/?

Thermistor

Figure 2 Typical NTC resistance values

Thermistor

NTC-typical temperature characteristic

20000

R(T ) = R25 ? e

? ? ?? ? B25/100?? 1 ? 1 ? ? ? T T ?? ? 25 ? ? ? ?

[Ω]

15000

10000

5000

0 25 50 75 100

T (°C)

125

copyright Vincotech

20

Revision: 5

FZ06NPA070FP
preliminary datasheet

Switching Definitions BUCK MOSFET
General conditions = 125 °C Tj Rgon IGBT Rgoff IGBT Figure 1 = = 8? 8? Output inverter IGBT Figure 2 Rgon MOSFET Rgoff MOSFET = = 0? 47 ? Output inverter IGBT

Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff)
160 140 120 100 VGE 90% 80 %60 40 20 tEoff tdoff

Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon)
200 180 160 VCE 140 120 % 100 80 60 IC

VCE 90%

VCE

VGE

tdon IC10%

VGE

IC
0 -20 -40 -0.1 IC 1%

40 20 0 -20 VGE10%

VCE3%

tEon
3.9 4 4.1 time(us) 4.2 4.3

0

0.1

time (us)

0.2

0.3

0.4

VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = Figure 3

-15 15 700 40 0.21 0.22

V V V A μs μs Output inverter IGBT

VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = Figure 4

-15 15 700 40 0.10 0.12

V V V A μs μs Output inverter IGBT

Turn-off Switching Waveforms & definition of tf
160

Turn-on Switching Waveforms & definition of tr
180

140 120 100 80 %60 40 20 IC10% 0 -20 -40 0.15 IC IC 90% IC 60% IC 40% fitted VCE

160 140 120 100 % 80 60 VCE IC90%

tr
40 20

I
IC10%

tf
0.2 0.25 time (us) 0.3 0.35

0 -20 4 4.05

time(us)

4.1

4.15

4.2

VC (100%) = IC (100%) = tf =

700 40 0.01

V A μs

VC (100%) = IC (100%) = tr =

700 40 0.01

V A μs

copyright Vincotech

21

Revision: 5

FZ06NPA070FP
preliminary datasheet

Switching Definitions BUCK MOSFET
Figure 5 Turn-off Switching Waveforms & definition of tEoff
120 % 100 80 60 40 20 0 VGE90% -20 -40 -60 -80 -100 -0.1 -20 0 0.1 time (us) 0.2 0.3 0.4 3.9 3.95 4 4.05 time(us) 4.1 4.15 4.2 20

Output inverter IGBT

Figure 6 Turn-on Switching Waveforms & definition of tEon
180

Output inverter IGBT

Eoff

%
140

Poff

Eon
100

tEoff

60

Pon

VGE10%

IC 1%

tEon

VCE3%

Poff (100%) = Eoff (100%) = tEoff =

28.08 0.23 0.22

kW mJ μs

Pon (100%) = Eon (100%) = tEon =

28.08 0.10 0.12

kW mJ μs

Figure 7 Turn-off Switching Waveforms & definition of trr
120

Output inverter IGBT

Figure 8

Output inverter FRED

Id

Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr)
150

80 trr 40 Vd 0 % -40 IRRM100% % 50 tQrr 100

Qrr Id

fitted
IRRM90%

0

-80

-120

-50

-160 4 4.05 4.1 time(us) 4.15 4.2 4.25

-100 4 4.05 4.1 4.15 4.2 time(us) 4.25

Vd (100%) = Id (100%) = IRRM (100%) = trr =

700 40 -34 0.01

V A A μs

Id (100%) = Qrr (100%) = tQrr =

40 0.12 0.47

A μC μs

copyright Vincotech

22

Revision: 5

FZ06NPA070FP
preliminary datasheet

Switching Definitions BUCK MOSFET
Figure 9 Output inverter FRED

Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec)
260

210

160

Erec
% 110

60

tErec Prec

10

-40 4 4.05 4.1 4.15 time(us) 4.2 4.25

Prec (100%) = Erec (100%) = tErec =

28.08 0.01 0.47

kW mJ μs

Measurement circuits
Figure 11 BUCK stage switching measurement circuit Figure 12 BOOST stage switching measurement circuit

Cg is included in the module

copyright Vincotech

23

Revision: 5

FZ06NPA070FP
preliminary datasheet

Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking
Version without thermal paste 12mm housing Ordering Code 10-FZ06NPA070FP-P969F in DataMatrix as P969F in packaging barcode as P969F

Outline

Pinout

copyright Vincotech

24

Revision: 5

FZ06NPA070FP
preliminary datasheet

PRODUCT STATUS DEFINITIONS Datasheet Status Product Status Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.

Target

Formative or In Design

Preliminary

First Production

Final

Full Production

DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

copyright Vincotech

25

Revision: 5

FZ06NPA070FP
preliminary datasheet

flowNPC 0
BUCK = = = =

NPC Application
General conditions 15 V -15 V 8? 8? VGEon VGEoff Rgon Rgoff BOOST = = = =

600V/75A & 70A PS*

VGEon VGEoff Rgon Rgoff Figure 1.

Vout= 230 VAC

15 V 0V 8? 8? Buck FRED

Buck MOSFET

Figure 2. Typical average static loss as a function of output current IoRMS Ploss=f(Iout)
60 Ploss (W) 50

Typical average static loss as a function of of output current IoRMS Ploss=f(Iout)
60 Ploss (W)

50

φ=0?

φ=90?

40

40

30

30

20

20

φ=0?

φ=180?
10 10

φ=180?
0 0 10 20 30 40 50 60 70 I out (A) 80 0 0 10 20 30 40 50 60 70 I out (A) 80

Conditions: parameter:

Tj= φ

125 from in

°C 0° 12 steps Buck MOSFET to 180°

Conditions: parameter:

Tj= φ

125 from in

°C 0° 12 steps Buck FRED to 180°

Figure 3. Typical average static loss as a function of phase displacement φ Ploss=f(φ)
60 Ploss (W)

Figure 4. Typical average static loss as a function of phase displacement φ Ploss=f(φ)
60 Ploss (W)

IoutRMS=Imax
50

50

40

40

IoutRMS=Imax
30 30

20

20

10

10

IoutRMS=6%Imin
0 0 20 40 60 80 100 120 140 160 180 φ(? ) 200 0 0 20 40

IoutRMS=6% Imax
60 80 100 120 140 160 180 φ(? ) 200

Conditions: parameter:

Tj= IoRMS

125 from in steps of

°C 4,67 A 9 A to 70 A

Conditions: parameter:

Tj= IoRMS

125 from in steps of

°C 4,67 A 9 A to 70 A

copyright Vincotech

1

Revision: 2

FZ06NPA070FP
preliminary datasheet

flowNPC 0
Figure 5. Typical average switching loss as a function of phase displacement φ Ploss=f(φ)
Ploss (W) 6,0

NPC Application
Buck MOSFET Figure 6.

600V/75A & 70A PS*
Buck FRED

Typical average switching loss as a function of phase displacement φ Ploss=f(φ)
Ploss (W) 0,18

0,16 IoutRMS=Imax 0,14 IoutRMS=Imax

5,0

4,0

0,12

0,10 3,0 0,08

2,0

0,06 IoutRMS=6% Imax 0,04

1,0 0,02

IoutRMS=6% Imax
0,0 0 20 40 60 80 100 120 140 160 0,00 φ(? ) 180 200 0 20 40 60 80 100 120 140 160 180 φ(? ) 200

Conditions:

Tj= fsw= DC link= IoRMS

125 20 700 from in steps of

°C kHz V 4,67 A 9 A Buck MOSFET to 70 A

Conditions:

Tj= fsw= DC link= IoRMS

125 20 700 from in steps of

°C kHz V 4,67 A 9 A Buck FRED to 70 A

parameter:

parameter:

Figure 7. Typical total loss as a function of phase displacement φ and output current IoRMS Ploss=f(IoRMS;φ)
P loss (W)

Figure 8. Typical total loss as a function of phase displacement φ and output current IoRMS Ploss=f(IoRMS;φ)

IoutR

65 61

P loss (W)

65 61
5-10

0-5

5-10

0-5

56 51
10-15 15-20

56 51 47 42
20-25 25-30

10-15

15-20

47 42 37

37 33
30-35 35-40

20-25

25-30

33 28

28 23
40-45 45-50

30-35

35-40

23 19 14

19 14

40-45

45-50

50-55

55-60

9 5 105 120 135 150 165 180

9 5 105 120 135 150 165 180

0

15

30

45

60

75 φ(? )

90

0

15

30

45

60

75 90 φ(? )

Conditions:

Tj= DC link= fsw=

125 700 20

°C V kHz

Conditions:

Tj= DC link= fsw=

125 700 20

°C V kHz

copyright Vincotech

2

Revision: 2

IoutR

70

70

FZ06NPA070FP
preliminary datasheet

flowNPC 0
Figure 9.

NPC Application
for Buck MOSFET+FRED Figure 10.

600V/75A & 70A PS*
for Buck MOSFET+FRED

Typical available output current as a function of phase displacement φ Iout=f(φ)
90 Iout (A)

Typical available output current as a function of switching frequency fsw Iout=f(fsw)
90 Iout (A) Th=50°C 80

80 70

Th=50°C

70 60 60 50 Th=100°C 40 30 20 10 0 0 15 30 45 60 75 90 105 120 135 150 165 φ 0 1 10 fsw (kHz) 100 180 10 40 Th=100°C 30 50

20

Conditions: parameter:

Tj= Tjmax-25 °C DC link= 700 V Heatsink temp. Th from 50 °C to in 10 °C

fsw=

20 kHz

Conditions: parameter:

Tj= Tjmax-25 °C DC link= Heatsink temp. Th from in 700 50 10 V °C to °C 100 steps

φ= 0 °

100 steps

°C

°C

Figure 11. fsw and phase displacement φ Iout=f(fsw,φ)
I out (A)

for Buck IGBT+FRED

Typical available 50Hz output current as a function of

180 165 150 135 120

φ

75-85

65-75

105 90 75

55-65

45-55

60 45 30 15 0 128

35-45

fsw (kHz)

2

4

8

16

32

64

Conditions:

Tj= Tjmax-25 °C DC link= Th= 700 80 V °C

copyright Vincotech

3

Revision: 2

FZ06NPA070FP
preliminary datasheet

flowNPC 0
Figure 12. Typical average static loss as a function of output current Ploss=f(Iout)
60 Ploss (W)

NPC Application
Boost IGBT Figure 13.

600V/75A & 70A PS*
Boost FRED

Typical average static loss as a function of output current Ploss=f(Iout)
90 Ploss (W)

φ=0?

φ=180?

80

50 70

40

60

50 30 40

20

30

20 10

φ=180?

10 φ=0?

0 0 10 20 30 40 50 60 70 Iout (A) 80

0 0 10 20 30 40 50 60 70 Iout (A) 80

Conditions: parameter:

Tj= φ

125 from in

°C 0° 12 to steps 180?

Conditions: parameter:

Tj= φ

125 from in

°C 0° 12 to steps 180?

Figure 14. Typical average static loss as a function of phase displacement Ploss=f(φ)
60 Ploss (W)

Boost IGBT

Figure 15. Typical average static loss as a function of phase displacement Ploss=f(φ)
90 Ploss (W)

Boost FRED

FRED D1
IoutRMS=Imax

IoutRMS=Imax
50

80

70

40

60

50 30 40

20

30

20 10 10

IoutRMS=6% Imax
0 0 20 40 60 80 100 120 140 160 180 φ(? ) 200 0 0 20 40 60 80 100 120 140

IoutRMS=6% Imax
160 180 φ(? ) 200

Conditions: parameter:

Tj= IoRMS

125 from in steps of

°C 5 A 9 A to 70 A

Conditions: parameter:

Tj= IoRMS

125 from in steps of

°C 5 A 9 A to 70 A

copyright Vincotech

4

Revision: 2

FZ06NPA070FP
preliminary datasheet

flowNPC 0
Figure 16. Typical average switching loss as a function of phase displacement Ploss=f(φ)
Ploss (W) 45

NPC Application
Boost IGBT Figure 17.

600V/75A & 70A PS*
Boost FRED

Typical average switching loss as a function of phase displacement Ploss=f(φ)
IoutRMS=Imax Ploss (W) 25 IoutRMS=Imax

40 20 35

30

15

25 10 20

15

5 IoutRMS=6% Imax

10 0 5

IoutRMS=6% Imax
φ(? ) 180

0

50

100

150

φ(? )

200

0 0 20 40 60 80 100 120 140 160

200

Conditions: parameter:

Tj= DC link= IoRMS

125 700 from in steps of

°C V 5 A 9 A

fsw= to A

20 kHz 70 A

Conditions: parameter:

Tj= DC link= IoRMS

125 700 from in steps of

°C V 5 A 9 A

fsw= to A

20 kHz 70 A

Figure 18. Typical total loss as a function of phase displacement and IoutRMS Ploss=f(IoRMS;φ)

Boost IGBT

Figure 19. Typical total loss as a function of phase displacement and IoutRMS Ploss=f(IoRMS;φ)

Boost FRED

IoutR

70 65 61

IoutR

70 65

P loss (W) 70-80
60-70

61 56 51

P loss (W)
35-40

56 51 47

50-60

47 42 37 33

30-35

42 37

40-50

25-30

30-40 20-25

33 28
20-30

28 23 19

15-20

23
10-15

10-20

19
0-10

5-10

14 9

14 9 5 105 120 135 150 165 180

0-5

0

15

30

45

60

75

90

5 105 120 135 150 165 180 φ(? )

0

15

30

45

60

75 90 φ(? )

Conditions:

Tj= DC link= fsw=

125 700 20

°C V kHz

Conditions:

Tj= DC link= fsw=

125 700 20

°C V kHz

copyright Vincotech

5

Revision: 2

MS

FZ06NPA070FP
preliminary datasheet

flowNPC 0
Figure 20. Typical available output current as a function of of phase displacement Iout=f(φ)
90 Iout (A)

NPC Application
Boost IGBT+FRED Figure 21. Typical available output current as a function of switching frequency Iout=f(fsw)
90 Iout (A)

600V/75A & 70A PS*
Boost IGBT+FRED

Th=50°C 80

80

70

70

60 Th=50°C

60

50

50

40 40 30 Th=100°C 20 20 10 10 0 0 15 30 45 60 75 90 105 120 135 150 165 180 φ(? ) 0 1 10 100 f sw (kHz) 1000 30 Th=100°C

Conditions: parameter:

Tj= Tjmax-25 °C DC link= 700 V Th from in Heatsink temp. 50 °C to 10 °C

fsw=

20 kHz

Conditions: parameter:

Tj= Tjmax-25 °C DC link= 700 V Th from in Heatsink temp. 50 °C to 10 °C 100 steps

φ= 90°

100 steps

°C

°C

Figure 22.

Boost IGBT+FRED

Typical available 50Hz output current as a function of fsw and phase displacement Iout=f(fsw,φ)
I out (A)
180 165 150 -10-0 0-10 135 120 10-20 20-30 105 90 30-40 40-50 75 60 50-60 60-70 45 30 15 0 128

φ

70-80

2

4

8

16

32

64

fsw (kHz)

Conditions:

Tj= Tjmax-25 °C DC link= Th= 700 80 V °C

copyright Vincotech

6

Revision: 2

FZ06NPA070FP
preliminary datasheet

flowNPC 0
Figure 23. Typical available output current as a function of heat sink temperature Iout=f(Th)
90 Iout (A)

NPC Application
per MODULE Figure 24. Typical available output current as a function of phase displacement Iout=f(φ)
90

600V/75A & 70A PS*
per MODULE

80

Iout (A)

80 Th=50°C 70

70

60 2kHz 50

60

50

40

40

30 128kHz 20

30

20 Th=100°C 10 φ

10

0 60 65 70 75 80 85 90 T h ( o C)100 95

0 0 15 30 45 60 75 90 105 120 135 150 165 180

Conditions:

Tj= Tjmax-25 °C DC link= φ= 700 V 0° Switching freq. kHz to 128 kHz

Conditions:

Tj= Tjmax-25 °C DC link= fsw= 700 V 20 kHz Heatsink temp. 50 10 °C to °C 100 steps per MODULE

parameter:

parameter: Th from in Figure 26.

fsw from 2 in steps of factor 2 Figure 25.

per MODULE

Typical available output current as a function of switching frequency Iout=f(fsw)
90 Iout (A) Th=50°C

Typical available 50Hz output current as a function of fsw and phase displacement Iout=f(fsw,φ)
180

φ

I out (A)
75-80 70-75

165 150 135 120 105 90 75

80

70

60

65-70 60-65

50 55-60 40 Th=100°C 50-55 45-50 40-45 35-40

30

60 45 30

20

10 15 0 1 10 f sw (kHz) 100 0 128

f sw (kHz)

2

4

8

16

32

64

Conditions: parameter: Th from in 50 10

Tj= Tjmax-25 °C DC link= 700 V Heatsink temp. °C to °C 100 steps

φ=



Conditions:

Tj= Tjmax-25 °C DC link= Th= 700 80 V °C

copyright Vincotech

7

Revision: 2

FZ06NPA070FP
preliminary datasheet

flowNPC 0
Figure 27. Typical efficiency as a function of output power η=f(Pout)

NPC Application
per MODULE Figure 28.

600V/75A & 70A PS*
per MODULE

Typical efficiency as a function of output power η=f(Pout)
efficiency (%) 100,0

efficiency (%)

100,0

2kHz
99,0 98,0

128kHz
97,0 96,0 99,0 φ=0? 95,0 94,0 93,0 92,0 φ=180? 91,0 90,0 89,0 Pout (kVA) 97,0 0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0 16,0 18,0 88,0 0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0 16,0 18,0 Pout (kVA)

98,0

Conditions:

Tj= fsw= DC link=

125 20

°C kHz

Conditions: parameter: to 180 °

Tj= DC link=

125 700

°C V 128

φ= 0 °

parameter:

700 V phase displacement φ from 0° in steps of 30 °

Switching freq. fsw from 2 kHz to in steps of factor 2

kHz

Figure 29. Typical available output power as a function of heat sink temperature Pout=f(Th)
20 Pout (kW) 18

per MODULE

Figure 30. Typical loss distribution as a function of output current Pout=f(Th)
140,0

per MODULE

Loss distribution 120,0 16 14 12 2kHz 10 8 6 128kHz 4 20,0 2 0 60 65 70 75 80 85 90 95 T h ( C)
o

T1 Stat. D3-5 Sw. D3-5 Stat.

100,0

80,0

60,0 T3 Sw. T3 Stat. 40,0

0,0 100 5 9 14 19 23 28 33 37 42 47 51 56 61 65 70 Iout (A)

Conditions:

Tj= Tjmax-25 °C DC link= 700 φ= 0 Switching freq. fsw from 2 kHz to in steps of factor 2

Conditions: V ° 128 kHz

Tj= fsw= DC link= φ=

125 20 700 0°

°C kHz V

parameter:

copyright Vincotech

8

Revision: 2

FZ06NPA070FP
preliminary datasheet

flowNPC 0
Figure 31. Typical relativ loss distribution as a function of output current Pout=f(Th)
1,0 0,9 0,8 T1 Stat. D3-5 Sw. D3-5 Stat. T3 Sw. T3 Stat. 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 5 9 14 19 23 28 33 37 42 47 51 56

NPC Application
per MODULE Figure 32.

600V/75A & 70A PS*
per MODULE

Loss distribution

61

65

70

Iout (A)

Conditions:

Tj= fsw= DC link= φ=

125 20 700 0°

°C kHz V

Cg is included in the module

copyright Vincotech

9

Revision: 2

FZ06NPA070FP
preliminary datasheet

PRODUCT STATUS DEFINITIONS Datasheet Status Product Status Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.

Target

Formative or In Design

Preliminary

First Production

Final

Full Production

DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

copyright Vincotech

10

Revision: 2

V23990-P629-F63-PM target datasheet

flow BOOST 0
Features
● High efficiency dual boost ● Ultra fast switching frequency ● Low Inductance Layout ● 1200V IGBT and 1200V SiC diode ● Antiparallel IGBT protection diode with high current

1200V/40A
flow0 12mm and 17mm housing

Target Applications
● solar inverter

Schematic

Types
● V23990-P629-F63-PM

Maximum Ratings
Tj=25°C, unless otherwise specified

Parameter Bypass diode & Boost IGBT protection diode
Repetitive peak reverse voltage DC forward current Surge forward current I2t-value Power dissipation per Diode Maximum Junction Temperature

Symbol

Condition

Value

Unit

VRRM IFAV IFSM tp=10ms I2t Ptot Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj=25°C DC current Th=80°C Tc=80°C

1600 34 47 220 240 41 62 150

V A A A2s W °C

Boost IGBT
Collector-emitter break down voltage DC collector current Repetitive peak collector current Power dissipation per IGBT Gate-emitter peak voltage Short circuit ratings Maximum Junction Temperature VCE IC ICpulse Ptot VGE tSC VCC Tjmax Tj≤150°C VGE=15V Tj=Tjmax tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 1200 35 48 120 108 164 ±25 10 600 150 V A A W V μs V °C

copyright Vincotech

1

Revision: 2

V23990-P629-F63-PM target datasheet

Maximum Ratings
Tj=25°C, unless otherwise specified

Parameter

Symbol

Condition

Value

Unit

Boost FRED
Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature VRRM IF IFRM Ptot Tjmax Tj=25°C Tj=Tjmax tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 1200 24 28 90 90 136 175 V A A W °C

Thermal Properties
Storage temperature Operation temperature under switching condition Tstg Top -40…+125 -40…+(Tjmax - 25) °C °C

Insulation Properties
Insulation voltage Creepage distance Clearance Vis t=2s DC voltage 4000 min 12,7 min 12,7 V mm mm

copyright Vincotech

2

Revision: 2

V23990-P629-F63-PM target datasheet

Characteristic Values
Parameter Symbol
VGE [V] or VGS [V]

Conditions
Vr [V] or VCE [V] or VDS [V] IC [A] or IF [A] or ID [A] Tj Min

Value
Typ Max

Unit

Bypass diode & Boost IGBT protection diode

Forward voltage Threshold voltage (for power loss calc. only) Slope resistance (for power loss calc. only) Reverse current Thermal resistance chip to heatsink per chip Thermal resistance chip to case per chip

Vf Vto rt Ir RthJH RthJC Thermal foil thickness=76um Kunze foil KUALF5 1600

25

25

Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=145°C

0,8

1,13 1,09 0,93 0,8 0,0081 0,0112

1,9

V V ?

0,05 1,71 1

mA K/W

Boost IGBT
Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off Gate-emitter leakage current Integrated Gate resistor Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy loss per pulse Turn-off energy loss per pulse Input capacitance Output capacitance Reverse transfer capacitance Gate charge Thermal resistance chip to heatsink per chip Thermal resistance chip to case per chip VGE(th) VCE(sat) ICES IGES Rgint td(on) tr td(off) tf Eon Eoff Cies Coss Crss QGate RthJH RthJC Thermal foil thickness=76um Kunze foil KUALF5 15 600 40 Tj=25°C f=1MHz 0 30 Tj=25°C Rgoff=4 ? Rgon=4 ? ±15 600 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C VCE=VGE 15 0 25 1200 0,025 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 3,5 1 5,5 2,6 2,9 7,5 3,5 1 300 none none 25 25 13 35 172 202 13 35 0,41 0,513 0,846 1,661 3200 370 125 25 0,65 0,43 nC K/W pF V V mA nA ?

ns

mWs

Boost FRED
Forward voltage Reverse leakage current Peak recovery current Reverse recovery time Reverse recovery charge Reverse recovered energy Peak rate of fall of recovery current Thermal resistance chip to heatsink per chip Thermal resistance chip to case per chip VF Irm IRRM trr Qrr Erec di(rec)max /dt RthJH RthJC Rgon=4 ? ±15 600 40 ±15 600 40 40 Tj=25°C Tj=150°C Tj=25°C Tj=175°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 2,74 3,01 23,95 22,64 8,6 9,4 0,1 0,1115 0,004 0,011 10933 7266 1,60 0,70 1,9 600 V μA A ns μC mWs A/μs K/W

Thermal foil thickness=76um Kunze foil KUALF5

copyright Vincotech

3

Revision: 2

V23990-P629-F63-PM target datasheet

Characteristic Values
Parameter Symbol
VGE [V] or VGS [V]

Conditions
Vr [V] or VCE [V] or VDS [V] IC [A] or IF [A] or ID [A] Tj Min

Value
Typ Max

Unit

Thermistor
Rated resistance Deviation of R25 Power dissipation Power dissipation constant B-value B-value Vincotech NTC Reference B(25/50) Tol. ±3% B(25/100) Tol. ±3% R ΔR/R P R100=1486 ? T=25°C T=25°C T=25°C Tj=25°C Tj=25°C Tj=25°C -5 200 2 3950 3996 B 22000 5 ? % mW mW/K K K

copyright Vincotech

4

Revision: 2

V23990-P629-F63-PM target datasheet

Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking
Version without thermal paste 12mm housing Ordering Code V23990-P629-F63-PM in DataMatrix as P629F63 in packaging barcode as P629F63

Outline

Pinout

copyright Vincotech

5

Revision: 2

V23990-P629-F63-PM target datasheet

flow BOOST 0

PRODUCT STATUS DEFINITIONS Datasheet Status Product Status Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.

Target

Formative or In Design

Preliminary

First Production

Final

Full Production

DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

copyright Vincotech

6

Revision: 2


相关文章:
三电平光伏逆变器图表介绍
三电平光伏逆变器图表介绍_能源/化工_工程科技_专业资料。简单介绍三电平逆变 三电平逆变器的主电路结构及其工作原理 文档贡献者 后青春的诗555 贡献于2016-05-25...
三电平逆变器的主电路结构及其工作原理
Dc2 sc3 sc4 `` sa4 `` `` `` 三电平逆变器的工作原理以输出电压 A 相为例,分析三电平逆变器主电路工作原理,并假设器件为理想器件,不 计其导通管压降。...
三电平逆变器的IGBT
对于三相三电平逆变器,需要一个采用 12 个电子元件(IGBT)的类 似结构(参阅图...( PD )的,即所有载波以相同的相位上下排列叠加 PD 方式是最常用,因为它的线...
三电平逆变器关键技术探究
除此之外,电容中点的电压不平衡还可以导致电 压应力在开关器件当中逐渐变大,...三电平逆变器的关键技术以及三电平逆变器的两种常用的控制方法等三个方面进行 了...
三电平逆变电路硬件设计
三电平逆变器的出发点是通过对主电路拓扑结构的改进,使得所有的功率器件能工作在...三电平的拓扑结构有很多, 目前常用的主要是基于 Nabae 方案 拓扑结构上的各种...
三电平光伏并网逆变器的设计和仿真
三电平光伏并网逆变器的设计和仿真_电力/水利_工程科技_专业资料。三电平光伏并网逆变器的设计和仿真 电气 太阳能三电平光伏并网逆变器共模电压 SVPWM 抑制策略研究 ...
第六次作业
答:牵引变流器根据中间直流环节滤波元件的不同,可 分为电压型和电流型两种。 (...2、简述两电平式、三电平式变流器的概念及选用原则。 答:根据逆变器输出交流侧...
基于光伏发电系统的三电平逆变器设计2003
三电平逆变器更适合大容量,高电压变频场合,具有开关 器件工作在较低频率下可以...而且对于三电平逆变器常见的中点不平衡问题没有考虑,因此本文模型的仿真 与调试...
三电平与两电平逆变器谐波特性的比较
三电平与两电平逆变器谐波特性的比较 引言 三电平逆变器自 1981 年 nabae 提出...(1) 每个桥臂上开关元件的电压应力为直流侧输入电压的一半,这样无需动态均压...
三电平逆变分析
三电平逆变分析_电子/电路_工程科技_专业资料。15KW 三电平 PWM 控制原理三电平逆变器结构如图 1 所示。采用两个主管串联,中间一对二极管嵌位的结构。可以 看出,...
更多相关标签:
三电平逆变器 | 三电平逆变器的优点 | 三电平逆变器原理 | t型三电平逆变器 | 三电平逆变器工作原理 | 三电平逆变器 matlab | 单相三电平逆变器 | t型三电平逆变器原理 |