当前位置:首页 >> 数学 >>

SCHUR不等式例题


a, b, c, are non-negative reals such that a+b+c=1. Prove that a3+b3+c3+6abc≥1/4 Solution. Multiplying by 4 and homogenizing, 4×(a3+b3+c3+6abc)≥4×(1/4) 4×(a3+b3+c3+6abc)≥1 we seek 4a3+4b3+4c3+

24abc≥(a+b+c)3 (a+b+c)3=a3+b3+c3+3a2(b+c)+b2(c+a)+c2(a+b)+6abc a3+b3+c3+6abc≥a2(b+c)+b2(c+a)+c2(a+b) Recalling that Schur’s inequality gives a3+b3+c3+3abc ≥ a2(b+c)+b2(c+a)+c2(a+b), the inequality follows. In particular, equality necessitates that the extra 3abc on the left is 0. Combined with the equality condition of Schur, we have equality where two of a, b, c are 1 and the third is 0. This is a typical dumbass solution. 2 Solution 2. Without loss of generality, take a ≥ b ≥ c. As a+b+c=1, we 1+c≤3 or 1?3c≥ 0. Write the left hand side as (a+b)3?3ab(a + b ? 2c) = (a + b)3 ? 3ab(1 ? 3c). This is minimized for a ?xed sum a + b where ab is made as large as possible. As by AM-GM (a + b)2 ≥ 4ab, this minimum occurs if and only if a = b. 3 2 Hence, we need only consider the one variable inequality 2 1?c + c3 + 6 1?c c = 2 2 1 · (9c3 ? 9c2 + 3c + 1) ≥ 1 . Since c ≤ 1 , 3c ≥ 9c2 . Dropping this term and 9c3 , the 4 4 3 inequality follows. Particularly, 9c3 = 0 if and only if c = 0, and the equality cases are 1 when two variables are 2 and the third is 0. This solution is of the smoothing variety in that we moved two variables together while preserving their sum. In other inequalities √ we may wish to preserve products and thus analyze the assignment a = b = ab. These are both representative of the technique of mixing variables, in which two or more variables are blended together algebraically as part of an argument allowing us to outright equate variables


相关文章:
舒尔不等式的若干例题
舒尔不等式的若干例题_数学_初中教育_教育专区。舒尔不等式的若干例题舒尔不等式:x,y,z≥0,r 为实数,则 x∧r﹙x-y﹚﹙x-z ) + y∧r﹙y-z﹚﹙y-x...
2013竞赛专题——著名不等式汇集
竞赛中著名不等式汇集作者 阿道夫 (配以典型的例题) 2013.2.28 在数学领域里...贝努利不等式 6. 琴生不等式 7. 含有绝对值的不等式 8. 舒尔不等式 9. ...
不等式知识
(十一)谈谈齐次形式不等式的程序化处理①对称整理类。 。。 (十二)谈谈齐次形式不等式的程序化处理②Schur 拆分法。 。。 (十三)细化赫尔德(H? lder)不等式&...
数学不等式(竞赛)
竞赛中的不等式 9页 免费 数学竞赛平面几何 5页 免费 高中不等式习题精选精解...舒尔( Schur )不等式 设 x , y , z ? R ,则 x ( x ? y )( x ...
成开华--不等式
5.Schur 不等式:设 x, y, z≥0, r 是实数,则 xr(x-y)(x-z)+yr(...二.例题选讲 1.若正实数 a,b,c 满足 a ? b ? c ? 1 求证: a3 1 ...
不等式(竞赛)
(该不等式的证明利用导数的符号得出函数的单调性) *10.三角函数有关的不等式 sin x < x < tan x x ∈ (0, *11。舒尔( Schur )不等式 设 x, y , ...
数值线性代数习题解答
[证明]只需按定义验证,取 矩阵A符合相容次序的定义. 习题 5 证明等式(5.1....Schur 分解,则 是上三角矩阵. [证明] 根据题设, 既然 没有重特征值, 不妨...
不等式理论简史
从此不等式不再是一些零星散乱 的、孤立的公式综合, 它已发展成为一套系统的科学...Polya(1926),Mulhoand(1928,1931),Owen(1930),Polya 和 Szegb,Schur(1911),...
关于“矩阵的行列式不等式”的几点注记
了三个命题,在这三个命题的证明过程 中用到了 Schur 定理和 Holder 不等式。...?2? 唐亚楠.高等代数同步辅导及习题全解[M].徐州: 中国矿业大学出版社, ...
高中数奥经验
权方和不等式 6.2.7 幂平均不等式 6.2.8 琴生不等式 6.2.9 Schur 不等式 6.2.10 嵌入不等式 6.2.11 卡尔松不等式 6.3 证明不等式的常用方法 6.3....
更多相关标签:
schur不等式 | 均值不等式典型例题 | 一元二次不等式例题 | 切比雪夫不等式例题 | 基本不等式例题 | 绝对值不等式例题 | 解一元二次不等式例题 | 分式不等式的解法例题 |