当前位置:首页 >> 数学 >>

SCHUR不等式例题


a, b, c, are non-negative reals such that a+b+c=1. Prove that a3+b3+c3+6abc≥1/4 Solution. Multiplying by 4 and homogenizing, 4×(a3+b3+c3+6abc)≥4×(1/4) 4×(a3+b3+c3+6abc)≥1 we seek 4a3+4b3+4c3+

24abc≥(a+b+c)3 (a+b+c)3=a3+b3+c3+3a2(b+c)+b2(c+a)+c2(a+b)+6abc a3+b3+c3+6abc≥a2(b+c)+b2(c+a)+c2(a+b) Recalling that Schur’s inequality gives a3+b3+c3+3abc ≥ a2(b+c)+b2(c+a)+c2(a+b), the inequality follows. In particular, equality necessitates that the extra 3abc on the left is 0. Combined with the equality condition of Schur, we have equality where two of a, b, c are 1 and the third is 0. This is a typical dumbass solution. 2 Solution 2. Without loss of generality, take a ≥ b ≥ c. As a+b+c=1, we 1+c≤3 or 1?3c≥ 0. Write the left hand side as (a+b)3?3ab(a + b ? 2c) = (a + b)3 ? 3ab(1 ? 3c). This is minimized for a ?xed sum a + b where ab is made as large as possible. As by AM-GM (a + b)2 ≥ 4ab, this minimum occurs if and only if a = b. 3 2 Hence, we need only consider the one variable inequality 2 1?c + c3 + 6 1?c c = 2 2 1 · (9c3 ? 9c2 + 3c + 1) ≥ 1 . Since c ≤ 1 , 3c ≥ 9c2 . Dropping this term and 9c3 , the 4 4 3 inequality follows. Particularly, 9c3 = 0 if and only if c = 0, and the equality cases are 1 when two variables are 2 and the third is 0. This solution is of the smoothing variety in that we moved two variables together while preserving their sum. In other inequalities √ we may wish to preserve products and thus analyze the assignment a = b = ab. These are both representative of the technique of mixing variables, in which two or more variables are blended together algebraically as part of an argument allowing us to outright equate variables


相关文章:
2013竞赛专题——著名不等式汇集
2​0​1​3​竞​赛​专​题​—​—​著​名​不​...贝努利不等式 6. 琴生不等式 7. 含有绝对值的不等式 8. 舒尔不等式 9. ...
舒尔不等式
舒尔不等式_数学_自然科学_专业资料 暂无评价|0人阅读|0次下载|举报文档 舒尔不等式_数学_自然科学_专业资料。 今日推荐 78份文档 ...
数学不等式(竞赛)
舒尔( Schur )不等式 设 x , y , z ? R ,则 x ( x ? y )( x ...c c ?1 由题设条件 xyz ? 1 得 abc ? ( a ? 1)( b ? 1)( c ...
3.2舒尔不等式和缪尔海德定理(10页)
3.2舒尔不等式和缪尔海德定理(10页)_数学_高中教育_教育专区。3.2 舒尔不等式和缪尔海德定理 定理 3.2:设 x , y , z 为非负实数,对任何 r ? 0 ,恒...
成开华--不等式
5.Schur 不等式:设 x, y, z≥0, r 是实数,则 xr(x-y)(x-z)+yr(...(1)设 a, b>0,且 a+b=ab,证明: 题) (2)求函数 y= x+27+ 13-x...
关于“矩阵的行列式不等式”的几点注记
阐述其行列式不等式,同时对有些命 题作出了引申与进一步说明;针对复正定矩阵,给出了三个命题,在这三个命题的证明过程 中用到了 Schur 定理和 Holder 不等式。 ...
重要不等式应用汇总9奥赛必备0
(0, *11.绝对值不等式: 设 a, b, a1 , a 2 , ? a n *12.舒尔(...其他不等式综合问题 例 1: (第 26 届美国奥数题)设 a、b、c∈R+, 求证...
数值线性代数习题解答
[证明]只需按定义验证,取 矩阵A符合相容次序的定义. 习题 5 证明等式(5.1....Schur 分解,则 是上三角矩阵. [证明] 根据题设, 既然 没有重特征值, 不妨...
数学竞赛中的不等式研究方
3 xyz 由 Schur 不等式可得: x 2 y + xy 2 + x 2 z + xz 2 + y...b ≤3 (2007 年第 48 届 IMO 预选题) 证明:令 x = a+ b? c b+ c...
竞赛知识点对照表
权方和不等式 6.2.7 幂平均不等式 6.2.8 琴生不等式 6.2.9 Schur 不等式 6.2.10 嵌入不等式 6.2.11 卡尔松不等式 6.3 证明不等式的常用方法 6.3....
更多相关标签: