当前位置:首页 >> 能源/化工 >>

Barix


Barix Multilayers: a Water and Oxygen Barrier for Flexible Organic Electronics

Robert Jan Visser
Organic Electronics Is the Future of Electronics Organic? MIT·Stanford·UC Berk

eley Nano Forum

Vitex Systems, Inc. 3047 Orchard Parkway San Jose, CA 95134 tel 408-519-4400 fax 408-519-4470 www.vitexsys.com

Flexible Organic Electronics
There is not only an important future of electronics in organics, but much of that future will be flexible as well : Drivers: Flexibility and form variety of applications Thin, light weight and unbreakable Cheaper materials Large area, cheaper processes: R2R, printing techniques

Applications of Organic electronics
Smart Smart Labels or ID Tags Labels or ID Tags
Integrated Integrated Electronics Electronics

Flexible Flexible Batteries Batteries

Optical Optical Network Network

Smart Smart Card Card

Digital Digital Imaging Imaging

HDI HDI

Display Display Solid State Solid State Lighting Lighting
Photovoltaics Photovoltaics

Flexible OLED display (NHK)

Flexible Solar cells

Displays and Lighting for automotive (Toyota)

The disadvantages of using plastics:
Need low temperature processes: <100~200 C Higher thermal expansion coefficient, lower dimensional stability then f.i. glass. Substrates are not flat and have many defects Plastics are highly permeable for water and oxygen and offer little protection for electronic components Barix multilayers offer a solution for the last two problems

Permeability and lifetime of devices
A typical plastic film has a permeability for water (WVTR) of 1~10 gr/m2/day WVTR Needed for ~10 yr device lifetime: Organic LED 10-6 gr/m2/day Solar Cells 10-4 gr/m2/day LCD 10-3 gr/m2/day Electroforetic displays 10-2 gr/m2/day RFID tags 10-2 gr/m2/day Permeabilities and requirements for Oxygen are very similar

Barix? Multilayer Encapsulation
Multilayer
Redundancy Tortuosity

Barrier Layers

Organic/Inorganic
Organic: planarization/smoothing Inorganic: barrier to H2O and O2 penetration

Polymer

Polymer

Polymer

Transparent
Suitable for top-emitter Flexible substrates

Polymer

Substrate

1 ?m

Low Temperature: Suitable for organic electronics

Barix? Multilayer Deposition
Liquid
Precursor

Liquid Cure Cure Inorganic Precursor deposition

?Inorganic: ?Aluminum oxide deposited by DC reactive sputtering ?Thickness 30-100 nm ?Organic: ?Monomer mixture deposited in vacuum ?Non-conformal deposition: Liquid-Vapor-Liquid- (UV curing)-Solid ?Thickness 0.25 – several ?m ?4-5 polymer / inorganic pairs (dyads) for encapsulation

Creating defect free surfaces
Atomic force Microscope reveals defect sites are eliminated
PET Barix? coated

150? peaks

<10? peaks

How does the multilayer barrier work?: The Role of Defects in diffusion
Defect Spacing (?m) l(P1)= [t2 + (s/2)2]1/2 ~ s/2 Physical Thickness (nm)
Diffusion path
Permeation

barrier polymer barrier

“Effective Thickness”

-diffusion of gas in x-y plane dominates -results in extremely long “effective” diffusion path

PET P1
AlOx

Barrier Mechanism: mainly a lag time effect

Extremely long “Effective” diffusion path length due to large spacing between defects in AlOx layers

Vitex’s Path
Today
Encapsulation process of rigid OLED displays

Tomorrow

Transparent barrier substrate for flexible displays

Full substrate/packaging solution for flexible plastic displays

Encapsulation of OLED displays on a glass substrate
Status: Barrier layers on OLED displays meet telecommunication requirements

Compatibility of the process with devices
Liquid
Precursor

Liquid Cure Cure Inorganic Precursor deposition

Chemistry Plasma UV Stress Heat

Many potential sources of damage With the right type of chemistry and process conditions they can be overcome

Encapsulation of Bottom Emission Test Pixels on Glass
1000 T = 0 hours Current Density (A/m2) 800 600 400 200 0 0
1.E+04

T=0

586 h 60C/90% RH

T = 500 hours

1

2

3

4

5 Voltage (V)

6

7

8

9

10

--- T=0h T = 500 h

Light Output (Cd/m2)

8.E+03

4.E+03

Pass requirements for 60C/90% RH, passive, 500 h 80 C, passive, 500 h -40 to +80 200 cycles 80C, 100 h energized
0 400 800 1200

0.E+00

Current Density (A/m2)

Encapsulation of Passive Matrix Displays on Glass: Edge Seal

Pillar Cathode Organic Substrate

500 h 60C/90% RH edge sealing over severe topography <10% pixel shrinkage uniform illumination no increase in leakage current

Guardian System – Linear Tool for R&D
Load Door Valve Position Sputter Position Ready Position Alignment Door Station Valve UV & Monomer Ready Station Position

Simplified Linear System

The first systems have been sold

Flexible Devices

Barrier Results for Plastic Substrate
Ca buttons can be used to test barrier performance

PEN film laminated to Glass

Barix Encapsulation Calcium Barrier on PEN

Long Ca Lifetimes with 2-sided thin film barrier
Almost no change after 570 h 60C 90% RH!
0.14
2638.1 2638.2 2638.3 2638.4

0.12

0.1 Ca Transmision

0.08

No pinholes

Permeation rate of ~1x10-6 for the combination of encapsulant and barrier substrate at 21C

0.06

0.04

0.02

0 0 100 200 300 Storage Time, h 400 500 600

Encapsulation of Plastic pixels and PM Displays
60C/ 85% RH Shelf test
0h

140 h
U.S. Patent No. 5,844,363 Photo: Courtesy of Universal Displays

Chwang, et.al. Appl. Phys. Lett. (2003), 83 (3), 413-415

RT Lifetime on plastic is ok Acceleration at higher T/ RH show poorer performance than on glass

Plastic Test Pixels after Encapsulation

0h

48 h Drybox

48 h 60/90

400 h 60/90

PLED Test Pixels. No black spot growth! Champion data: a lot of know how about processing on plastics needs to be developed

Examples of flexible OLED displays
First products expected in 2006

Flexible Substrate R2R Pilot Line
Large scale manufacturing of plastic barrier substrate. Process Control and Process Improvement remain key focal points Continue analysis to identify failure modes: Mechanical abrasion Impact of particles Sources of particles Co-operation with TMI (CT)

Conclusions
Barix thin film encapsulation can meet requirements for OLED’s in telecom applications Vitex Encapsulation tools are entering the market Barix multilayers successfully solves two problems of plastic substrates: Provide a microscopically flat surface Protection of devices against the environment Flexible Organic Electronics is just around the corner

Acknowledgements
Vitex Staff whose work appears in this presentation: Lorenza Moro, Xi Chu, Todd Krajewski, Teresa Ramos, Cara Hutchinson, Nicole Rutherford, Marty Rosenblum, Steve Lin PNNL Staff whose work appears in this presentation: Mark Gross, Wendy Bennett. Flexible substrate and encapsulation of plastic displays funded in part by USDC contracts RFP98-37 and RFP01-63 Encapsulation of flexible displays funded in part by subcontract no. 070102.10 to UDC on ARL DAAD19-02-2-0019. Samsung SDI Universal Display Corporation. Philips DuPont Teijin Films Techni-Met, Inc. Tokki Corporation


相关文章:
Barix封装
Barix 封装完成后,成品 OLED 可以在大气环境中进行其余的显示器装配工作。 图2为将 Barix 封装应用到 OLED 显示器的示意图。 由于不再使用金属外壳、玻璃盖...
家庭常备药
这个设计是德国独一无二的 成份:28.6%桉树油 和 71.4%云杉精油 Barix 是针对感冒引起的呼吸道系统充血症状的安全产品。有效地缓解儿童因充血引起的上呼吸系统堵塞...
德国常用药品说明书(仅供参考)
Barix 是针对感冒引起的呼吸道系统充血症状的安全产品。有效地缓解儿童因充血引起的上 呼吸系统堵塞问题 适用对象: 适用于宝宝因感冒引起的鼻塞,呼吸困难等 成人,...
柔性显示器
器的密封壳中除去残留在内部的水和氧气; (五) 对柔性衬底和制备好的 FOLED 器件进行多层膜包覆密封, 这也是目前的发展、 研 究重点, 典型代表技术是 Barix ...
OLED的衬底及封装技术研究现状及展望
图5 Barix封装结构示意图 Fig.5 Stucture of Barix encapsulation 上述4种常见的OLED封装技术虽然在一定程度上能满足器件的封装要求,但是这些封 装方法制备的OLED...
FPC 塑胶基板之真空镀膜技术及其应用
美國 Vitex Systems 公司開發出應用於塑膠基板的多層結構水氣阻絕層 (BarixTM),BarixTM 是利用 Roller Coater,在塑膠基板上鍍上多層無機材料並能保留原基材穿透率...
柔性显示器件技术综述
目前最常用的薄膜封装方法是通过 多层的有机-无机薄膜的组合来形成封装的阻挡层, 也叫做 Barix 封装技术。上海大学通过真空气相沉 积的方法制备了氟化镁和硫化锌...
BB用品(德国)
这个设计是德国独一无二的 成份:28.6%桉树油 和 71.4%云杉精油 Barix 是针对感冒引起的呼吸道系统充血症状的安全产品。有效地缓解儿童因充血引起的上呼吸系统堵塞...
塑料基板之真空镀膜技术及其应用
故 Gas Barrier 也是发展重点.美国 Vitex Systems 公司开发出应用于塑料基板的多层结构水气阻绝层 (BarixTM),BarixTM 是利用 Roller Coater,在塑料基板上镀上多层...
柔性OLED封装方法的研究
Barix结构的最后一层为ITO层,可作为有机发光二极管的 阳极。制成的衬底的透过率在可见光谱区大于80%,而膜层的电阻小于40/□。M.S.Weaver等人[7],报道了一种...
更多相关标签:
barix封装 | barix barionet | barix sip | barix技术 | barix manqu | barix 精油 | sip client | barix 专利 |