当前位置:首页 >> 机械/仪表 >>

CCI汽机旁路说明书


High Pressure Turbine Bypass Valve HBSE?

2

HBSE? from Sulzer Valves delivers pressure reduction, temperature control and fast response in a compact, high pressure steam

conditioning valve.

The Rugged, Compact Steam Conditioning Solution The HBSE? Turbine Bypass Valve by CCI is the standard turbine bypass valve for high pressure bypass systems of combined cycle power plants. With a compact, robust design that easily fits into most existing piping arrangements, it can be installed in any orientation. All components, including the flow diffuser, are removable through the top of the valve making maintenance and inspection quick and easy. The spherical body shape has been designed to avoid material concentrations and abrupt changes of wall thickness, minimizing thermal stress in the valve. In addition, the HBSE? is available as a combined control and safe shutoff valve according to TRD 421.
Water-injection nozzle provides smallest water droplet size possible

Spring-Loaded Nozzle Desuperheating HBSE? desuperheating features integral spring-loaded water-injection nozzles that optimize water-injection over a wide range of flow rates at low pressures. With a rangeability of up to 50:1, the spring-loaded water-injection nozzles vary the water flow area as required to achieve the fine water droplet size needed for atomization. The spring-loaded water-injection nozzle design provides the smallest water droplet size possible without steam assist. Small-Drilled-Hole Cage Technology The HBSE? Turbine Bypass Valve uses Small-Drilled-Hole Cage (SDHC) technology to provide system noise attenuation through frequency shifting. Frequency shifting is a proven method of noise attenuation recognized by ISA in Technical Standard SP75.07 and by the IEC in Technical Standard 5348-3.

Good atomization at wide range of flow rates

CCI HBSE? Turbine Bypass Valve

In frequency shifting, the main flow stream is separated into hundreds of tiny jets. The size of the jets, which are primarily based on hole size, determines the resulting noise frequency – the smaller the size of the jet or drilled hole, the higher the frequency which in turn produces a lower dBA level. SmallDrilled-Hole Cage technology is well suited for high pressure combined cycle and drum boiler turbine bypass applications requiring moderate noise performance. Unlike traditional drilled hole cages, the SDHC trim uses over one thousand small drilled holes spaced apart in a special pattern designed to ensure full jet separation, structural integrity, and noise attenuation. All drilled hole technology is not the same – large drilled holes do not shift the frequency high enough, and improper spacing between drilled holes allows the jets to rejoin and form larger jets after exiting the cage. The conical flow diffuser shape limits vibration by increasing the structural strength when compared to cylindrical cage designs.

Small-Drilled-Hole Cage technology uses frequency shifting to maximize noise attenuation

Highly reliable, fast, accurate pneumatic and hydraulic actuators provide superior system control.

3

Accurate Control and Available TRD 421 Safety Function CCI’s long history of developing advanced technology valves and actuation systems for severe service and safety-related applications has led to the development of the most reliable actuation systems available today. CCI has supplied pneumatic and hydraulic actuation systems for over 30 years and has an extensive installed global base. In addition, if equipped with the necessary safety control devices in combination with the CCI hydraulic actuation system, the HBSE? can be used as a combined control and safe shutoff valve according to TRD 421. The selection of pneumatic or hydraulic actuation is primarily a function of valve design for the particular application as well as customer preference. A comparison of the factors influencing actuator selection is given in Table 1. Improve Plant Efficiency – Eliminate Lost Steam During normal operation, any leakage past a turbine bypass valve means lost revenue.
g

Steam that does not go through the turbine does not generate electricity or revenue for the plant. Money spent generating the steam is lost. Steam leaking past a valve seat could erode the seat and cause an increase in the leakage rate and maintenance downtime. Steam leaking past a valve to condenser could reduce the efficiency of the condenser by deteriorating the vacuum and raising the condenser temperature.

g g

g

The CCI HBSE? Turbine Bypass Valve comes standard with DIN 3230, Rate 3 or ANSI/FCI 70-2 Class V Shutoff, providing dependable, repeatable, shutoff for long periods of time with high pressure differentials. DIN 3230, Rate 1 or MSS-SP-61 Shutoff is standard with hydraulic actuation.

CCI HBSE? Turbine Bypass Valve

Table 1: Factors Influencing Actuator Selection Performance Attribute Stroke Speed Resolution Thrust Reliability Procurement Cost Installation Cost Maintenance Components CCI Pneumatic Actuator Fast, Less Than 1 Second (optional) Good, Less Than 1% Meets Thrust Requirements for Balanced or Pressurized Seat Valves Very Reliable and Robust Inexpensive Inexpensive Easy, With Medium Skills Low Pressure, Reliable Accessories CCI Hydraulic Actuator Very Fast, Less Than 0.5 Seconds Very Good, Less Than 0.1% Meets Thrust Requirements for Unbalanced Valves Very Reliable and Robust Higher Cost Higher Cost Requires Higher Skills for Maintenance High Pressure, Proven Accessories

4

Optimized Body Shape For Minimal Thermal Stress Designed for cyclic operation and frequent start-ups.

Top Entry Design Minimizes service time. No Trim Parts are Welded or Screwed Into the Valve Body

Small-Drilled-Hole Cage Technology Ensures low noise levels.

Spring-Loaded Spraywater Nozzle Desuperheaters Provides superior atomization. Mounted directly to outlet eliminating need for additional piping sections. Spraywater Manifold System Multiple attemperation injection points with single water supply source connection.

CCI HBSE? Turbine Bypass Valve

Valve Performance Characteristics (% Cv vs. % Stroke)
Valves can be characterized to accommodate a wide range of variables.

Linear

Modified Linear

Modified Equal Percentage

Use this checklist to evaluate the benefits of the HBSE? design.

CCI HBSE? Turbine Bypass Valve

5

1. Special needs can be accommodated. Please consult with the factory. 2. Flexible tubing is standard for the spraywater manifold system. Rigid piping manifold option is available. 3. Dump tubes available if required.

6

Table 2: Dimensional Information

CCI HBSE? Turbine Bypass Valve

Valve Size 100 150 200 250 300 350 1. 2. 3. 4. 5.

Inlet Pipe Size (inch) 4"-6" 4"-6" 8"-12" 8"-12" 8"-12" 10"-14" 12" - 16"

Outlet Pipe Size (inch) 6" - 10" 6" - 10" 12" - 16" 12" - 16" 14" - 18" 18" - 22" 20"-24"

A

B

C

C*

5.9 (150) 5.9 (150) 9.8 (250) 9.8 (250) 11.8 (300) 13.8 (350) 15.7 (400)

14.2 (360) 14.2 (360) 15.7 (400) 15.7 (400) 21.1 (535) 25.6 (650) 29.9 (760)

52 (1330) 52 (1330) 54 (1365) 54 (1365) 55 (1390) 56 (1425) 58 (1460)

43 (1080) 43 (1080) 44 (1115) 44 (1115) 45 (1140) 46 (1175) 54 (1360)

All dimensions are in inches except () are in millimeters. Dimension C* is for a hydraulic actuator. Buttweld per ANSI B16.25 and mating pipe schedule. Valve may be installed in any orientation. The upper structure does not require additional support. Flexible tubing to a single connection manifold is supplied as standard.

7

Technical specifications and materials.

6

Table 3: Capacity and Performance Data

2 1 5

3

7 4 8

Table 4: Materials 1. 2. 3. Rangeability may vary with process conditions. Consult with factory. For exact pressure/temperature rating, consult factory. Electro mechanical actuation available on request.

Table 5: Recommended Desuperheating Lengths Using Spring-Loaded

CCI HBSE? Turbine Bypass Valve

1. 2.

Alternate materials available per customer’s specific design requirements. For hydraulic actuator, plug/stem material is X19CrMoVNbN111.

*

With saturated steam, to avoid pipe erosion and liquid drop-out due to droplet impingement, bends should be avoided. ** Saturated steam conditions cannot be controlled through downstream temperature measurement. Feed-forward/enthalpy control recommended. + All dimensions are in feet except () are in meters

Low Pressure Turbine Bypass Valve NBSE?

2

For over 30 years the NBSE? from Sulzer Valves provides high reliability and accurate control in one steam conditioning valve.

The Rugged, Compact Steam Conditioning Solution The NBSE? Turbine Bypass Valve by CCI is the standard turbine bypass valve for intermediate pressure bypass systems of combined cycle power plants and low pressure bypass systems of subcritical and supercritical steam cycles. The design is based on proven Sulzer Valves technology, the leader in turbine bypass for power plants for many, many years. Featuring an integrated spring-loaded spraywater nozzle desuperheating manifold at the valve outlet, the NBSE? minimizes the downstream desuperheating distance making it suitable for bypass-to-condenser applications with short pipe runs. The contoured body shape has been designed to avoid material concentrations and abrupt changes of wall thickness, minimizing thermal stress in the valve.
Water-injection nozzle provides smallest water droplet size possible

In addition, the NBSE? is available as a combined control and safe shutoff valve according to TRD 421. Spring-Loaded Nozzle Desuperheating NBSE? desuperheating features integral spring-loaded water injection nozzles that optimize water injection over a wide range of flow rates at low pressures. With a rangeability of up to 50:1, the spring-loaded water injection nozzles vary the water flow area required to achieve the fine water droplet size needed for atomization. The spring-loaded water injection nozzle design provides the smallest water droplet size possible without steam assist. Small-Drilled-Hole Cage Technology The NBSE? Turbine Bypass Valve uses Small-Drilled-Hole Cage (SDHC) technology to provide system noise attenuation through frequency shifting. Frequency shifting is a proven method of noise attenuation recognized by ISA in Technical Standard SP75.07 and by the IEC in Technical Standard 5348-3. In frequency shifting, the main flow stream is separated into hundreds of tiny jets. The size of the jets, which are primarily based on hole size, determines the resulting noise frequency – the smaller the size of the jet or drilled hole, the higher the frequency which in turn produces a lower dBA level. Small-Drilled-Hole Cage technology is well suited for intermediate pressure combined cycle and low pressure drum boiler turbine bypass applications requiring reliability with moderate noise performance. Unlike traditional drilled hole cages, the SDHC trim uses over one thousand small drilled holes spaced apart in a special pattern designed to ensure full jet separation, structural integrity, and noise attenuation. All drilled hole technology is not the same – large drilled holes do not shift the frequency high enough, and improper spacing between drilled holes allows the jets to rejoin and form larger jets after exiting the cage. The conical flow diffuser shape limits vibration by increasing the structural strength when compared to cylindrical cages.

CCI NBSE? Turbine Bypass Valve

Good atomization at wide range of flow rates

Small-Drilled-Hole Cage technology uses frequency shifting to maximize noise attenuation

3

Highly reliable, fast, accurate pneumatic and hydraulic actuators provide superior system control.

Accurate Control and Available TRD 421 Safety Function CCI’s long history of developing advanced technology valves and actuation systems for severe service and safety-related applications has led to the development of the most reliable actuation systems available today. CCI has supplied pneumatic and hydraulic actuation systems for over 30 years and has an extensive installed global base. In addition, if equipped with the necessary safety control devices in combination with the CCI hydraulic actuation system, the NBSE? can be used as a combined control and safe shutoff valve according to TRD 421. The selection of pneumatic or hydraulic actuation is primarily a function of valve design for the particular application as well as customer preference. A comparison of the factors influencing actuator selection is given in Table 1. Improve Plant Efficiency – Eliminate Lost Steam During normal operation, any leakage past a turbine bypass valve means lost revenue.
g

Steam that does not go through the turbine does not generate electricity or revenue for the plant. Money spent generating the steam is lost. Steam leaking past a valve seat could erode the seat and cause an increase in the leakage rate and maintenance downtime. Steam leaking past a valve to condenser could reduce the efficiency of the condenser by deteriorating the vacuum and raising the condenser temperature.

g g

g

CCI NBSE? Turbine Bypass Valve

The CCI NBSE? Turbine Bypass Valve comes standard with DIN 3230, Rate 3 or ANSI/FCI 70-2 Class V Shutoff, providing dependable, repeatable, shutoff for long periods of time with high pressure differentials. DIN 3230, Rate 1 or MSS-SP-61 Shutoff is standard with hydraulic actuation.

Table 1: Factors Influencing Actuator Selection
Performance Attribute Stroke Speed Resolution Thrust Reliability Procurement Cost Installation Cost Maintenance Components CCI Pneumatic Actuator Fast, Less Than 1 Second (optional) Good, Less Than 1% Meets Thrust Requirements for Balanced or Pressurized Seat Valves Very Reliable and Robust Inexpensive Inexpensive Easy, With Medium Skills Low Pressure, Reliable Accessories CCI Hydraulic Actuator Very Fast, Less Than 0.5 Seconds Very Good, Less Than 0.1% Meets Thrust Requirements for Unbalanced Valves Very Reliable and Robust Higher Cost Higher Cost Requires Higher Skills for Maintenance High Pressure, Proven Accessories

4

Optimized Body Shape For Minimal Thermal Stress Designed for cyclic operation and frequent start-ups.

Top Entry Design Minimizes service time.

No trim parts are welded or screwed into the valve body

Small Drilled-Hole-Cage Technology Ensures low noise levels.

Spring-Loaded Spraywater Nozzle Desuperheaters Provides superior atomization. Mounted directly to outlet eliminating need for additional piping sections. Spraywater Manifold System Multiple attemperation injection points with single water supply source connection.

CCI NBSE? Turbine Bypass Valve

Valve Performance Characteristics (% Cv vs. % Stroke)
Valves can be characterized to accommodate a wide range of variables.

Trim H

Trim S

5

Use this checklist to evaluate the benefits of the NBSE? design.

CCI NBSE? Turbine Bypass Valve

1. Special needs can be accommodated. Please consult with the factory. 2. Flexible tubing is standard for the spraywater manifold system. Rigid piping manifold option is available. 3. Dump tubes available if required.

6

Table 2: Dimensional Information Valve Size Inlet Pipe Size (inch) 12" - 16" 14" - 18" 18" - 22" 22" - 26" 26" - 30" Outlet Pipe Size (inch) 18" - 28" 20" - 30" 24" - 34" 32" - 42" 34" - 44"

CCI NBSE? Turbine Bypass Valve

A

B

C

C*

C**

350 400 500 600 700

17.7 (450) 18.1 (460) 21.6 (550) 26.0 (660) 29.9 (760)

29.5 (750) 33.9 (860) 40.6 (1030) 47.6 (1210) 58.6 (1490)

88.5 (2250) 71.2 (1810) 100.9 (2565) 113.3 (2880) 127.7 (3245)

104.3 (2650) 108.6 (2760) 116.7 (2965) 129.1 (3280) 143.5 (3645)

125.9 (3200) 130.3 (3310) 138.3 (3515) 150.7 (3830) 165.1 (4195)

1. All dimensions are in inches except () are in millimeters. 2. Dimension C is for a hydraulic actuator, C* is for a pneumatic actuator and C** is for a pneumatic actuator including an optional handwheel on top. 3. Buttweld per ANSI B16.25 and mating pipe schedule. 4. Valve may be installed in any orientation. The upper structure does not require additional support. 5. Flexible tubing is supplied to a single connection manifold.

Technical specifications and materials.

7

6

Table 3: Capacity and Performance Data

Valve size
Trim S Max Capacity (Cv)
Trim S Kv
Trim H Max Capacity (Cv) Trim H Kv

350
1416
1224
1114
962

40 0
1873
1618
1503
1298

50 0
2762
2386
2179
1883

60 0
4117
3556
3317
2866

70 0
5758
4973
4665
4031

2
1

5

Valve Characterization (%Cv vs. %Opening) Rangeability1

Linear (standard) Up to 50:1 Pneumatic: DIN 3230, Rate 3 (ANSI/FCI Class V) as Standard Hydraulic: DIN 3230, Rate 1 (MSS-SP-61) as Standard Double-Acting Pneumatic Piston or Hydraulic Open or Closed as Required Fail in Place with Hydraulic Actuator < 2 Seconds Standard, < 1 Second Optional Up to 600 C (1110 F) Up to 70 Bar (1015 Psig)

Shut off Class

3

7
8

Actuator Type3 Fail Mode Stroke Time Valve Inlet Temperature Rating2 Valve Inlet Pressure Rating2

4

Table 4: Materials 1. Rangeability may vary with process conditions. Consult with factory. 2. For exact pressure/temperature rating, consult factory. 3. Electro mechanical actuator available on request. Table 5: Recommended Desuperheating Lengths Using Spring-Loaded Nozzles

CCI NBSE? Turbine Bypass Valve

1. Alternate materials available per customer’s specific design requirements. 2. For hydraulic actuator, plug/stem material is X19CrMoVNbN111.

* With saturated steam, to avoid pipe erosion and liquid drop-out due to droplet impingement, bends should be avoided. **Saturated steam conditions cannot be controlled through downstream temperature measurement. Feed-forward/enthalpy control recommended. + All dimensions are in feet except () are in millimeters.

NBSE

/
NBSE /

NBSE

? ?
? ? ?

?

? ?

? ? ? ?

?

20 - 160 bar 500 - 570 C ANSI class V
CCI

CCI CCI

1

:
Kv / Kvs

0.8

0.6

: : : / / ~ 500 - 570 C ~ 20 - 160 bar

0.4

0.2

0

DIN 3230, point 3/ANSI B16-104, class V, MSS-SP61 /

0

0.2

0.4

0.6

0.8

1

Stroke y / y100

NBSE 64 - ... NBSE 160 - ... Kv NBSE ..-150 NBSE ..-200 NBSE ..-250 NBSE ..-300 NBSE ..-350 NBSE ..-400 NBSE ..-450 NBSE ..-500 NBSE ..-550 NBSE ..-600 NBSE ..-650 350 520 725 965 1235 1540 1880 2250 2740 3280 3860

20 - 64 bar 65 - 160 bar Cv 406 603 841 225 1120 1786 2181 2610 3178 3804 4269 100mm 110mm 120mm 130mm 140mm 150mm 155mm 160mm 170mm 180mm 190mm 001 004 007 008 010 013 049 / SA182F91 X20CrMoV121 10CrMo910 X20CrMoV121 X19CrMoVNbN111 G-Co65Cr27W6 10CrMo910

CCI Switzerland P.O. Box 65 Hegifeldstrasse 41 CH-8404 Winterthur Telephone ++41 52 262 11 66 Telefax ++41 52 262 01 65 CCI Japan 194-2 Shukunosho Ibaraki-City, Osaka 567 Japan Telephone ++81 726 41 71 97 Telefax ++81 726 41 71 98

CCI World Headquarter 22591 Avenida Empresa Rancho Santa Margarita CA 92688, U.S.A Telephone ++1 949 858 18 77 Telefax ++1 949 858 18 78 CCI Korea 26-17, 26 Pungmu-Ri Kimpo-Eup, Kimpo Gun Kyungi-Do, South Korea Telephone ++82 341 85 94 30 Telefax ++82 341 85 05 52

NBSE_chn1 / 08/07/01

CCI DRAGR 100DSV 喷水控制阀

DRAGR 迷宫技术适用于恶劣的应用环境 ? 节能 ? 提高热效率 ? 免维护
? 为了保证热电厂的安全、可靠、高效运行, 对蒸汽温度进行控制至关重要。恒温器喷 水调节装置是过热、再热温度控制过程的 最后一个元件,是对蒸汽温度进行精确控 制的重要元件。经过调整的节流蒸汽温度 控制可以保证将温度控制在设定值,使汽 机高效运行。 减温喷水阀的要求 ? 根据控制电路的要求,在任何负荷下, 提供准确的喷水量。 ? 可以在高压 降下操作( 达 3500psi 或 240bar) ,不会破坏阀内件。 ? 可靠、一致的运行 ? 关闭严密,可以防止对阀门或下游设备 (例如汽机、高旁管道)的破坏。 减温喷水阀出现故障后带来的后果 ? 热效率损失。喷水阀泄漏将会使节流蒸 汽温度下降。低温会明显影响热效率。 此时需要增加锅炉的热输入,以便使节 流蒸汽温度保持在设定值。 ? 温度控制问题。蒸汽温度控制不准确将 会影响到高旁蒸汽管道和汽机。压力超 过 1800 psi (124 bar)时,34-40 F(19- 22C)的温度变化将会造成约 1%的热效 率变化。 ? 维护费用高。阀内件腐蚀损坏后,需要 经常更换阀内件或进行维修。 减温喷水阀出现问题的迹象 ? 腐蚀损坏:由于内件级数不足或阀内件 超速造成 ? 阀杆裂缝或疲劳故障。一般由阀内件超 速、震动、疲劳故障造成。 ? 上游隔离阀的操作阻塞调节阀的泄漏。

采用DRAGR 技术解决应用问题

再热器 再热器喷水调节 一级过热器 二级过热器 过热器喷水调节 锅炉省煤器 给水调节阀 锅炉给水泵 除氧器 冷凝泵 DA液位调节阀 热井 汽机高压旁路 汽机低压旁路 图 1:典型喷水系统图。100DSV CCI DRAGR 技术的 设计可以满足多种恶劣的应用环境

Inlet Pressure: 入口压 Inlet velocity:入口流速 Outlet Pressure:出口压 Outlet velocity:出口流速 Flashpoint:闪蒸点 Cavitation bubbles form here, flashing occurs 在此 形成气穴,发生闪蒸

采用DRAGR 技术来提供方案 确保可靠 DRAGR流速控制功能可以保护阀内件, 的系统性能! 内件出口流速过高是造成调节阀损坏的主要原因 (腐蚀与速度的 3 次方或 4 次方成比例) 通过采 。 用曲折的多路径设计限制出口流速,CCI DRAGR 阀可以消除腐蚀对阀内件和阀体的破坏。每个流 体路径都有一系列的弯头,可以限制穿过阀门的 流体压降。流体路径具有扩张的通道可以降低出 口流速。 CCI 喷水阀达到或超过了 ISA 指南 “调节阀测量、 调节使用指南”中设定的调节阀流体速度限值。
使用条件 连续单相流体 气穴、多相出口流体 速度(H20) Ft/s 100 75 M/s 30 23

图 2:典型调节阀。液体速度高、降压级 数少两种情况结合,将导致阀内件产生 气穴或腐蚀。

需要多少级降压级数?
压降 流速、压降级数 建议的流速/弯 头 psi 1级 英寸/秒 3级 英寸/秒 流速 英寸/秒 弯 头

举例:环境水温 采用CCI DRAGR圆盘组,确保在各种流体工况 下的精确控制和可靠运行。 DRAGR 喷水阀圆盘组具有修订的等百分比阀内 件特性曲线,保证良好的温度控制。圆盘组中的 圆盘在阀芯座端具有多级压降(多达 20 级) ,在 阀芯全开端只有很少的压降级数。在阀门行程过 程中,可以很好地保护座圈,并且能控制温度。 使用独立、隔离的流体路径,防止流体路径之间 的短路。 可靠的长期关闭 DRAGR喷水阀使用硬座,耐切割以及高座负荷, 可以在高压差下多次可靠地长期关闭阀门。执行 机构的尺寸保证座环的负载最小(每英寸的圆周 承受 500 lbf的负荷,即 9 kg/mm) 。DRAGR流速 控制内件设计保证座圈和阀塞表面不会因腐蚀造 成切口或小坑。

图 3:DRAGR技术方案。流体低、降压 级数多,确保液体压力得到了控制。

图 4:CCI 100DSV 多路径、多降压级数 的内件设计,确保在各种流量工况下提 供良好的阀门性能。

CCI 的恒温喷水调节新方案

阀杆填料
特富龙填料及石墨导向垫

顶部开口设计
维修时间最短, 阀内无任何焊接或螺栓连 接部件

垫圈密封盖
根据 2500 ANSI 设计

阀芯
控制性能好

阀塞 Inconel 718 多级 DRAG 控制元件
限制速度, 控制震动和腐蚀。 比座节流内 件的控制性能好

阀座:易于维护
无焊接或打磨。 可以快速地进行检查、 维 修或更换,工作量小。

V 级关闭等级
金属阀座密封标准

阀门性能特性曲线 (%Cv vs % 行程) 经过定制的阀门其特性适合于多种应用范围

% 行程 修正等百分比

% 行程 等百分比

通过检查列表,评估使用DRAGR 益处

100DSV 喷水设计的益处 DRAGR 100DSV 对比产品

1. DRAG 技术流速控制功能可以保护阀内件。 使用 20 级控制,将出口的流速限制到不超过 100fps。消除了腐 蚀、震动造成的破坏。

R

2. 提高了热效率。 CCI 喷水阀减少了泄漏造成的能量损 失、产能损失,可以大大节能。

3. 可靠的长期重复关断性能,消除了泄漏。定制的执 行机构可以提供 500 PLI或更高值。使用金属阀座可以 耐损坏。DRAGR 技术流速控制设计可以保护阀内件防 止损坏。消除了喷水泄漏,防止主蒸汽的过渡冷却,节 约了燃料。 4. 改善了温度控制。 经过定制的等百分比内件特性可以 满足各种电厂规范,执行机构行程长,灵敏度高,改善 了控制。

5. 降低了维护成本。采用DRAGR 技术流速控制、执行 机构尺寸定制和座环设计技术,降低了维护成本和频 率,消除了腐蚀。

6. 易于维护。 从顶部进入设计特点保证维护时间短, 不 需要进行内部焊接或加工。

技术规范、材质 表 1: DRAG 100 DSV 喷水阀的材质
R

零件 阀体 阀盖 阀座 阀塞 阀芯 平衡密封 阀杆填料 垫圈

编号 1 2 3 4 5 6 7 8

结构材质 A216 WCB A 182-F22 316SS Inconel 718 Inconel 718 特富龙 特富龙 Flextalic (石墨/不锈钢)

表 2: DRAGR 100 DSV 喷水阀技术规范
额定压力 阀体 入口最高温度 流向 可调比 执行机构 ANSI 2500 角阀或球阀(直通) 500 F (260 C) 阀塞上方 (流关) 100:1 带定位器的弹簧膜片 (3-15 PSIG)& 过滤调节器 故障模式 标准:故障关 (可选:保位) 手动机构(可选) 集成的阀位变送器 (标准配置) 集成的 I/P 变换器 限位开关 (可选项) 关闭 输入信号=4-20mA DPDT ANSI V 类 500 PLI 如图所示 输出信号=4-20mA

注: 1. 所有对焊的端接头符合 ANSI B16.25 可以进行定制,以满足 Cv 和管道要求。 2. 所有承插焊接的端接头符合 ANSI B16.11 3. 尺寸、选型请查阅 CCI 阀门手册。 详情请咨询 CCI 办事处。

5(152)MIN REQD FOR REMOVAL :至少需要 5(152)以便进行去除操作 INLET: 入口 OUTLET: 出口 表 3:DRAGR 100 DSV 喷水阀外形尺寸
尺寸 单位:mm 标称尺寸:1 英寸 阀芯:3/8 英寸, 5/8 英寸, 1 英寸 角阀 A B C D 4.0 英寸 (102 mm) 37 英寸(940 mm) 3.1 英寸 (79 mm) 直通阀 8.0 英寸 (203 mm) 角阀 5.8 英寸 (146 mm) 44 英寸(1120 mm) 4.6 英寸 (117 mm) 标称尺寸:2 英寸 阀芯:1.5 英寸 直通阀 11.5 英寸 (292 mm)

表 4: DRAGR 100 DSV 喷水阀可选项
阀芯 重量 额定 Cv 部分阀芯 阀芯 阀门行程 BW 接头符合 ANSI B16.25

SW 接头符合 ANSI B16.10

SERIES 840G CAGE GUIDED VALVE
The series 840G cage-guided valve is specially designed using the most recent refinements in control valve technology. It is used to control a wide variety of relatively clean liquids and gases at highpressure differentials. The design of the 840G valve is very flexible in that it allows a variety of trim types to be installed in the body. In addition, its cage-guided construction reduces plug vibration and provides stable performance throughout travel. All trims of the 840G valve have a quick change design so it guarantees convenient repair and easy replacement of trim. The 840G valve is available in size 1 1/2? - 12?, ANSI 150 - 1500 classes, with either flanged or welding end connections.

Specifications
Valve Size: Ratings: End Connections: Materials: Port Sizes: 1 1/2? to 12? ANSI Class 150, 300, 600, 900 and 1500 Flanged End, Welding End See Table 1 on Page 3 Full or Reduced

Flow Characteristic: Equal Percentage, Linear or Quick Open. Seat Leakage: Dimensions: Standard-ANSI Class IV Option-ANSI Class V or VI See Table 4 on Pages 6,7

Features
Simple-to-Change Capacity or Characteristic: A simple cage change is all that is required to change between reduced and full-sized capacity trims or between linear and equal percentage characteristics. Tight Shutoff: A variety of shutoff classes from ANSI IV through VI are available to meet application requirements. Sour Gas/Corrosive Fluid Capable: The wide choice of body and trim materials allows the 840G to be applied to corrosive/sour gas services with full compliance to NACE requirements. Easy Maintenance: Top-entry design and a cageretained seat ring allow for quick inspection or trim change.

Quality Assurance/Quality Control
All Series 840G valves meet the ANSI B16.34 standard for ?Valves - Flanged, Threaded, and Buttwelding End.? This encompasses the dimensions, construction, testing and rating of all valves supplied. We also perform ANSI standard seat leakage and hydrostatic tests on every valve we build, and operability tests are run on each valve and actuator leaving our factory. Special tests are readily available to meet your specific project needs, including nondestructive testing of valve components and performance testing of actuator controls.

2

Table 1 Combination of Body Assembly Materials

NO.

PART NAME

MATERIAL A 216 WCB,WCC A 217 WC6, WC9 A 351 CF8, CF8M A 351 CF3, CF3M A 351 CN7M A 352 LCC HASTELLOY-C 316 SS 316 SS Stellited 420 SS

1 2

Body Bonnet

3

Plug

4

Stem

316 SS 316 SS 316 SS Stellited 420 SS 316 SS / TFE 316 SS 420 SS 316 SS Glass-filled TFE EPDM Viton Graphite 316 SS TFE (Filler) & SS or Graphite (Filler) SS TFE (V-Packing) Glass-Filled TFE Graphite

Figure 1 Contoured Plug Type

5

Seat

6

Cage

7

Packing Gland

8

Balance Seal

9

Packing Spacer Body/Bonnet Gasket Seat Gasket Packing Set

10 11

Figure 2 Drilled Hole Cage Type

12

3

Table 2 Flow Coefficients, Cv

Plug Size Stoke Cv Value (inch) (mm) Linear, EQ% Quick Open Rangeability
Plug Size Stroke Cv Value (inch) (mm) Linear, EQ % Quick Open Rangeability

1 1/2" 0.8 20 33 33 38 50 1.2 30 1.2 30

2" 1.6 40 50 62 75 30

2 1/2" 1.2 70 80 30 : 1 1.6 40 1.2 30 80 105

3" 1.6 40 100 120 1.6 40 120

4" 2.0 50 170 190

5" 2.0 50 260 280 2.8 70 310 350 2.0 50 320 370

6" 2.8 70 350 400 2.8 70 500 660

8" 3.9 100 620 700 30:1 2.8 70 850 1050

10" 3.9 100 1020 1250 2.8 70 1000 1580

12" 3.9 100 1400 1660

Equal Percentage Flow Chart

Percent of Rated Travel

Cv Value

Figure 3

4

Table 3 Cv Table
EQ% Port
Port Size 1 1/2" 2" 2 1/2' 3' 4" 5" 6" 8" 10" 12" Stroke (inch) (mm) 0.08/1.2 20/30 1.2/1.6 30/40 1.2/1.6 30/40 1.2 30 1.6 40 1.6 40 2.0 50 2.0 50 2.0 50 2.8 70 2.8 70 3.9 100 2.8 70 3.9 100 2.8 70 3.9 100 Table 3 Cv Table Cv At Percent Open 80 70 60 50 17 12 8.5 6.0 25 18 13 9.1 36 25 18 13 40 29 21 15 51 36 26 18 61 43 31 22 86 61 44 31 132 94 67 48 162 115 82 58 178 126 90 64 253 180 128 91 314 224 159 113 431 306 218 155 517 368 262 186 507 361 257 183 709 505 359 256

100 33 50 70 80 100 120 170 260 320 350 500 620 850 1020 1000 1400

90 24 36 50 57 71 86 121 185 228 250 356 441 605 726 712 996

40 4.2 6.5 9.1 10 13 16 22 34 42 46 65 81 111 133 130 182

30 3.1 4.6 6.5 7.4 9.3 11 16 24 30 32 46 57 79 94 93 130

20 2.2 3.3 4.6 5.3 6.6 7.9 11 17 21 23 33 41 56 67 66 92

10 1.6 2.3 3.3 3.8 4.7 5.6 8 12 15 17 23 29 40 48 47 66

Linear Port
Port Size 1 1/2" 2" 2 1/2" 3" 4" 5" 6" 8" 10" 12" Stoke (inch) 0.08/1.2 1.2/1.6 1.2/1.6 1.2 1.6 1.6 2.0 2.0 2.0 2.8 2.8 3.9 2.8 3.9 2.8 3.9 (mm) 20/30 30/40 30/40 30 40 40 50 50 50 70 70 100 70 100 70 100 100 33 50 70 80 100 120 170 260 320 350 500 620 850 1020 1000 1400 90 30 45 64 72 90 108 154 235 289 316 452 560 768 922 904 1265 80 27 40 57 65 81 97 137 210 258 283 403 500 686 823 807 1129 70 23 36 50 57 71 85 121 185 227 246 355 440 604 724 710 994 Cv At Percent Open 60 50 20 17 31 26 43 36 49 41 61 52 74 62 104 88 160 134 196 165 24 181 307 258 380 320 522 439 628 527 614 517 859 723 40 14 21 29 34 42 50 71 109 134 147 210 260 357 428 420 588 30 11 16 23 26 32 39 55 84 104 113 162 201 275 330 324 453 20 7.5 11 16 18 53 27 39 59 73 80 113 140 193 231 227 317 10 4.3 6.5 9.1 10 13 16 22 34 42 46 65 81 111 133 130 182

5

Table 4 840G Cage-Guided Body Dimensions

Figure 4
VALVE SIZE (inch) 1 1/2" 2" 2 1/2" 3" 4" 5" 6" 8" 10" 12" (mm) 40 50 65 80 100 125 150 200 250 300 ANSI Class 150 8.75/222 10.00/254 10.88/276 11.75/298 13.88/352 15.87/403 17.75/451 21.38/543 26.50/673 29.00/737 ANSI Class 300 9.25/235 10.50/267 11.50/292 12.50/318 14.50/368 16.75/425 18.62/473 22.38/568 27.88/708 30.50/775 L (Flanged End) ANSI Class 600 9.88/251 11.25/286 12.25/311 13.25/337 15.50/394 18.00/457 20.00/508 24.00/610 29.62/752 *36.22/920 ANSI Class 900 13.12/333 14.75/375 16.12/410 *18.12/460 20.12/511 20.25/514 28.12/714 36.00/914 34.00/864 44.50/1130

Unit: inch/mm
ANSI Class1500 13.12/333 14.75/375 16.12/410 *18.12/460 20.87/530 21.00/533 30.25/768 38.25/972 39.00/991 44.50/1130

VALVE SIZE (inch) 1 1/2" 2" 2 1/2" 3" 4" 5" 6" 8" 10" 12" (mm) 40 50 65 80 100 125 150 200 250 300 ANSI Class 150 9.88/251 11.25/286 11.50/292 12.50/318 14.50/368 16.75/425 18.62/473 22.38/568 27.88/708 30.50/775

L (Welding End) ANSI Class 300 9.88/251 11.25/286 11.50/292 12.50/318 14.50/368 16.75/425 18.62/473 22.38/568 27.88/708 ANSI Class 600 9.88/251 11.25/286 12.25/311 13.25/337 15.50/394 18.00/457 20.00/508 24.00/610 29.62/752 ANSI Class 900 13.0/330 14.75/375 16.12/410 18.12/460 20.87/530 21.00/533 30.25/768 38.25/972 39.00/991 ANSI Class1500 13.0/300 14.75/375 16.12/410 18.12/460 20.87/530 21.00/533 30.25/768 38.25/972 39.00/991

6

30.50/775 36.22/920 44.50/1130 44.50/1130 Notes: 1. All dimensions are for reference only 2. Flange Body Fact to Face dimensions per ISA, except as indicated by * 3. For angle body consult factory 4. Welding End: 1) 1 1/2? - 2? = Socket Weld 2) 2 1/2? - 12? = Butt Weld

Figure 5 Standard Bonnet

Figure 6 Bellows Bonnet

Figure 7 Extension Bonnet

Unit: inch/mm
VALVE SIZE (inch) 1 1/2" 2" 2 1/2" 3" 4" 5" 6" 8" 10" 12" (mm) 40 50 65 80 100 125 150 200 250 300 Hs 5.8/146 6.3/159 7.1/180 8.1/206 9.4/239 11.8/300 12.4/316 14.4/365 15.9/405 17.5/445 ANSI Class 150, 300 Hbs 13.8/350 15.0/380 16.5/420 18.1/460 20.4/517 23.2/590 24.8/630 27.2/690 28.4/720 30.5/775 Hes 10.8/275 13.4/340 13.8/350 17.3/440 19.8/504 23.8/590 26.8/680 29.5/750 32.3/820 35.0/890 ANSI Class 600 Hs 5.8/146 6.3/159 9.8/250 8.9/227 11.2/285 12.2/310 12.9/327 15.0/380 16.9/430 18.3/465 Hbs 10.8/275 13.4/340 14.4/366 18.2/463 20.9/530 24.8/630 28.4/720 32.9/835 34.6/878 36.2/920 ANSI Class 900, 1500 Hs 7.2/190 8.9/225 10.2/260 19.9/304 13.6/345 11.8/300 17.6/446 16.5/420 18.1/460 19.7/500 Hes 13.8/350 17.5/444 18.9/480 20.6/524 23.6/600 25.6/650 33.5/851 33.9/860 36.2/920 39.6/1005

Note: All dimensions are for reference only

7


相关文章:
汽机旁路方案
燃气-蒸汽联合循环机组,汽轮机为东方汽轮 机厂生产的 LN78-7.6/514/217 型双压单缸凝汽式汽轮机,其旁路系统为瑞 典 CCI 阀门技术公司生产的 BIG 旁路系统...
CCI旁路系统丰达项目机械手册(中文版)
CCI旁路系统丰达项目机械手册(中文版)_电力/水利_工程科技_专业资料。汽机旁路说明书高、低压汽机旁路控制阀 操作、维护手册(机械部分)(该中文手册为参考用,所有内...
苏尔寿旁路说明
CCI_sulzer_bypass(chin... 29页 免费 旁路控制系统说明 暂无评价 6页 1下载...2.1 旁路系统的容量 . 旁路系统主要的功能是协调锅炉产生的蒸汽与汽轮机用汽...
旁路控制系统的应用
我们公司设计为高低压串联的两级旁路系统,采用 CCI-...旁路启动功能 旁路自动说明一 ?高旁在并网以后自动...如果是在旁路阀关闭且锅炉压力已经高出汽机冲转压力...
旁路
二期机组采用 CCI 公司设计的高、低压二级串联旁路...需要说明的是,实际喷水流量是一计算值,它是由低旁...低旁温度控制阀任一不在自动; 3) 汽机旁路跳闸。...
主再热蒸汽及旁路系统介绍
主再热蒸汽及旁路系统介绍 本机组的主蒸汽系统采用...主汽门直接与汽轮机调速汽门蒸汽室相连接.主 汽门...选用二只美国 CCI 气动调节减压阀,经二级减温后...
1号机汽机旁路阀座更换施工方案
1号机汽机旁路阀座更换施工方案_建筑/土木_工程...(H 点) CCI 公司技术指导技师现场指导安装及调试 ...8 行动 方案 流程 A 角色 职责 B (补充说明) 1...
CCI旁路阀的特点
CCI旁路阀的特点_机械/仪表_工程科技_专业资料。CCI 旁路的前身是瑞士苏尔寿公司...CCI汽机旁路说明书 29页 免费 CCI 迷宫阀 CCI 调节阀 33页 免费 CCI迷宫...
XX电厂旁路控制系统调试措施
(1996 年版)山东电力工业局 2.6 生产厂家提供的有关图纸及说明书、电力设计...及其液压执行机构由上海 CCI 公司总成, 汽机旁路由高压旁路系统和低压旁路系统...
旁路控制系统的应用
旁路控制系统的应用 旁路系统概况 ?汽机旁路系统最...我们公司设计为高低压串联的两级旁路系统,采用 CCI-...旁路启动功能 旁路自动说明一 ?高旁在并网以后自动...
更多相关标签:
cci旁路 | 汽轮机旁路系统 | 汽机旁路阀 | 汽轮机旁路 | 旁路凝汽器 | 汽机旁路 | 汽轮机旁路系统作用 | 汽轮机高低旁路 |