当前位置:首页 >> 能源/化工 >>

太阳级硅中杂质对电池效率的影响(英文)


Specification of solar grade silicon: How impurities affect efficiency
Bart Geerligs

20th EPVSEC Barcelona 2005, 2AO1.3

Outline
Objective and introduction Ingots and cells from artificially contaminated silicon feedstock: – Titanium – Aluminum Analysis of results Implications for feedstock specification

20th EPVSEC Barcelona 2005, 2AO1.3
2

Objective
Determine allowable concentrations of impurities in silicon feedstock for mc-Si solar cells. Reasons: specific Silicon produced for Photovoltaics possibility of Low-cost and abundant Silicon feedstock from carbothermic reduction of quartz. SiO2 + 2C → Si + 2CO Fe, Ti, Al, and C are major impurities in silicon from carbothermic reduction. What are the target levels for these impurities?
20th EPVSEC Barcelona 2005, 2AO1.3
3

Which specs are available?
Si wafer manufacturers: “we like to be on the safe side, the SEMI poly-Si spec [<0.1 ppmw total metals] works for us…” For PV, there exist more specific earlier studies:

J.R. Davis, et al., IEEE Trans El. Dev. ED-27, 677 (1980) Cz-growth

also, Fally et al., Revue Phys. Appl. 22, 529 (1987) mc-Si, but no info on Ti

20th EPVSEC Barcelona 2005, 2AO1.3
4

Experimental procedure

poly-Si feedstock with added impurity

directional solidification furnace

ingot & wafers

20th EPVSEC Barcelona 2005, 2AO1.3
5

Experimental procedure

poly-Si feedstock with added impurity

directional solidification furnace industrial in-line cell process SiNx:H coating 14.5 – 15% cell efficiency

ingot & wafers

20th EPVSEC Barcelona 2005, 2AO1.3
6

Titanium
10 ppmw (parts-per-million by weight) of Ti were added to the feedstock
20

JscVoc (W/cm )

2

18

15%rel

25%rel

16 reference S10: Ti 0 20 40 60 80 100

14

position in ingot towards top (%)

20th EPVSEC Barcelona 2005, 2AO1.3
7

Titanium
10 ppmw (parts-per-million by weight) of Ti were added to the feedstock
20 0
IQE (%)

18

16 reference S10: Ti 0 20 40 60 80 100

-50

14

-100

ingot S10, position in ingot: 13% 19% 24% 54% 65% 86% 400 600 800 1000 1200 wavelength (nm)

JscVoc (W/cm )

2

position in ingot towards top (%)

Reduction of Jsc due to strongly reduced red-response in IQE
20th EPVSEC Barcelona 2005, 2AO1.3
8

Aluminum
5 ppmw of Al were added to the feedstock
20

JscVoc (W/cm )

2

16

15%rel

25%rel

12

reference S6: Al 0 20 40 60 80 100

position in ingot towards top (%)

20th EPVSEC Barcelona 2005, 2AO1.3
9

Aluminum
5 ppmw of Al were added to the feedstock
20 0 JscVoc (W/cm )
2

16

IQE (%)

-50

12

reference S6: Al 0 20 40 60 80 100 -100

ingot S6, position in ingot: 14% 30% 53% 69% 400 600 800 1000 1200

position in ingot towards top (%)

wavelength (nm)

Reduction of Jsc again due to reduced red-response in IQE

20th EPVSEC Barcelona 2005, 2AO1.3
10

Analysis of results
15-25% reduction of JscVoc due to 5 ppmw Al or 10 ppmw of Ti is too much to be acceptable. How can we determine the maximum allowable concentration? Can the cell efficiency for other concentrations be modeled and predicted? Is there experimental data to verify such a model?

20th EPVSEC Barcelona 2005, 2AO1.3
11

Model for analysis
5

segregation during ingot growth

4 Cs (a.u.) 3 2 1 0.0 0

1 impurity concentration Cs ∝ 1 x

0.2 0.4 0.6 0.8 1.0 20 40 60 80 100 position in ingot x position in ingot towards top (%)

20th EPVSEC Barcelona 2005, 2AO1.3
12

Model for analysis
1 5 Leff in solar cell (a.u.) Cs (a.u.)

segregation during ingot growth

4 3 2
top 1 0 0.0 0 bottom

1 impurity concentration Cs ∝ 1 x
If impurity dominates recombination

1 1 ∝ ∝ Cs 2 Leff τ eff
Leff ∝ 1 x

0.4 (1-x) 0.6 0.8 1.0 1 √ (square root ofposition in ingot xtowards bottom) position in ingot

0.2

Leff can be determined from the red-response of the IQE
20th EPVSEC Barcelona 2005, 2AO1.3
13

Comparing Leff from IQE with model
Leff follows expected decrease to top of ingot. (exception: bottom of S6)
Leff (m) from IQE 150 S10 (Ti) S6 (Al)

100

50
top 0 0.0 bottom

0.6 0.8 1.0 √(1-x) (square root of position towards bottom of ingot)

0.2

0.4

20th EPVSEC Barcelona 2005, 2AO1.3
14

Comparing Leff from IQE with model
Leff follows expected decrease to top of ingot. (exception: bottom of S6) Conclusion: Relation between feedstock contamination and recombination is linear (no non-linear effects from precipitation, etc.).
Leff (m) from IQE 150 S10 (Ti) S6 (Al)

100

50
top 0 0.0 bottom

0.6 0.8 1.0 √(1-x) (square root of position towards bottom of ingot)

0.2

0.4

20th EPVSEC Barcelona 2005, 2AO1.3
15

Comparing Leff from IQE with model
Leff follows expected decrease to top of ingot. (exception: bottom of S6) Conclusion: Relation between feedstock contamination and recombination is linear (no non-linear effects from precipitation, etc.). (at least for Al, Ti, for the used concentrations and probably lower)
20th EPVSEC Barcelona 2005, 2AO1.3
16

Leff (m) from IQE

150

S10 (Ti) S6 (Al)

100

50
top 0 0.0 bottom

0.6 0.8 1.0 √(1-x) (square root of position towards bottom of ingot)

0.2

0.4

Do-It-Yourself specification of solar grade silicon
1. Construct PC1D model for your cell process, and calculate cell efficiency versus Leff 2. Use 1/Leff2 ∝ CL (CL is impurity concentration in the feedstock) “generic” plot of cell efficiency versus CL (CL in a.u.). 3. One data point (impurity concentration and cell efficiency) to calibrate CL-scale. 4. Choose acceptance level of cell efficiency (cost analysis! e.g. 97%rel efficiency if feedstock 25% lower cost). 5. Read required impurity concentration from plot.

20th EPVSEC Barcelona 2005, 2AO1.3
17

Graphical presentation of D-I-Y feedstock specification
relative to high-purity feedstock
14.5% cell techn. 17% cell techn.

1.0

cell efficiency (%rel)

0.9

0.8

our results: 5 ppmw Al or 10 ppmw Ti

0.7

1 10 100 impurity concentration (a.u.)
20th EPVSEC Barcelona 2005, 2AO1.3

18

Graphical presentation of D-I-Y feedstock specification
relative to high-purity feedstock
14.5% cell techn. 17% cell techn.

1.0

cell efficiency (%rel)

0.9

0.8

our results: 5 ppmw Al or 10 ppmw Ti 60x reduction

0.7

1 10 100 impurity concentration (a.u.)
20th EPVSEC Barcelona 2005, 2AO1.3

19

Graphical presentation of D-I-Y feedstock specification
relative to high-purity feedstock

1.0

spec: 0.1 ppmw Al or 0.2 ppmw Ti

14.5% cell techn. 17% cell techn.

cell efficiency (%rel)

0.9

0.8

our results: 5 ppmw Al or 10 ppmw Ti 60x reduction

0.7

1 10 100 impurity concentration (a.u.)
20th EPVSEC Barcelona 2005, 2AO1.3

20

Conclusions
Clear impact of Ti and Al at ppm level. Dependence of impact on position in ingot modeled according to segregation and linear relation between Leff-2 and Cfeedstock. Extrapolated feedstock specification based on 3%rel cell efficiency reduction: Al: 0.1 ppmw Ti: 0.2 ppmw See the paper for more details, also on carbon, mix of impurities, Fe, and modelling of economics!
20th EPVSEC Barcelona 2005, 2AO1.3
21

Thank you for your attention
Acknowledgements Oyvind Mjs, NTNU Trondheim ScanArc, Scanwafer, HCT EC for contracts SOLSILC, SPURT, and SISI Coauthors: Petra Manshanden, Paul Wyers (ECN Solar Energy), Eivind vrelid, Ola Raaness, Aud Waernes (Sintef), Benno Wiersma (Sunergy)

22

22

20th EPVSEC Barcelona 2005, 2AO1.3 20th EPVSEC Barcelona 2005, 2AO1.3


相关文章:
温度对多晶硅太阳电池性能影响的研究
由于冶金级硅比太阳级硅的杂质、缺陷含量高,#1电 池的Voc和Isc随温度的改变比#2电池剧烈。对于电池单 体,虽然dVoc/dT的绝对值比dIsc/dT小,但是dVoc/dT占 ...
金属杂质对多晶铸锭的影响
铸造多晶硅中的金属杂质及其对硅片性能的影响研发技术部 习海平 工号 02575 摘要:铸造多晶硅中金属杂质对太阳电池的转换效率有重要影响,金属杂质的含量与多晶硅片...
太阳能电池及硅切片技术
其中硅太阳电池是目前发展最成熟的,在应用中居主导...电效率衰退效应,稳定性不高,直接影响了它的实际应用...晶界及杂质影响可通过 电他工艺改善。 晶体硅太阳能...
2014硅电池原理期末复习题库
5、 简述硅太阳能电池工作原理 太阳能电池发电的...减少熔硅与坩埚作用,使坩埚中杂质较少进入 熔体,并...9、 解释晶体硅中缺陷和深能级杂质对电池效率的影响...
铸造多晶硅中的金属杂质及其对硅片性能的影响aaa
特别是过渡金属杂质, 在原生铸锭的浓度般都低于 1×10” cm 3, 但是它们无论是以单个原子形式,或者以沉淀形式出现,都对太阳电池的转换 效率有重要的影响。...
浅谈太阳能电池的发展与应用
薄膜太阳电池;转换效率 引言:由于人类对可再生能源...在形成晶体结构的半导体中, 人为地掺 入特定的杂质...太阳级 硅制备新工艺研究进展[J] . 轻金属, ...
硅电池扩散氧化层对电池性能的影响
太阳电池的一种重要的原料,已经成为晶硅太阳电池生产...多晶硅片中还含有 Fe,Cr,Cu 等杂质,它们一般以...能 级成为复合中心,降低少子寿命,影响电池转换效率...
影响太阳电池光电转换效率的因素和提高转换效率的主要...
影响太阳电池光电转换效率的因素及提高太阳电池效率的...光生电子 -空 穴对在空间电荷区中产生后,立即被...体内杂质和微观缺陷、PN 并联电阻是由边缘漏电、 ...
氮化硅对电池效率的影响的研究
氮化硅对电池效率的影响的研究 摘要:在物理法提纯太阳能多晶硅材料和定向结晶系统...氮化硅减反射膜对太阳能... 692人阅读 7页 1下载券 太阳级硅中杂质对电池效...
多晶硅中的氧碳行为及其对太阳电池转换效率的影响
多晶硅中的氧碳行为及其对太阳电池转换效率的影响 隐藏>> 立方结构的 SiC 按照...从定向凝固多晶硅锭中氧、碳杂质的来源来看,分凝机制的影响主要针对晶 体硅原料...
更多相关标签: