当前位置:首页 >> 能源/化工 >>

太阳级硅中杂质对电池效率的影响(英文)


Specification of solar grade silicon: How impurities affect efficiency
Bart Geerligs

20th EPVSEC Barcelona 2005, 2AO1.3

Outline
Objective and introduction I

ngots and cells from artificially contaminated silicon feedstock: – Titanium – Aluminum Analysis of results Implications for feedstock specification

20th EPVSEC Barcelona 2005, 2AO1.3
2

Objective
Determine allowable concentrations of impurities in silicon feedstock for mc-Si solar cells. Reasons: specific Silicon produced for Photovoltaics possibility of Low-cost and abundant Silicon feedstock from carbothermic reduction of quartz. SiO2 + 2C → Si + 2CO Fe, Ti, Al, and C are major impurities in silicon from carbothermic reduction. What are the target levels for these impurities?
20th EPVSEC Barcelona 2005, 2AO1.3
3

Which specs are available?
Si wafer manufacturers: “we like to be on the safe side, the SEMI poly-Si spec [<0.1 ppmw total metals] works for us…” For PV, there exist more specific earlier studies:

J.R. Davis, et al., IEEE Trans El. Dev. ED-27, 677 (1980) Cz-growth

also, Fally et al., Revue Phys. Appl. 22, 529 (1987) mc-Si, but no info on Ti

20th EPVSEC Barcelona 2005, 2AO1.3
4

Experimental procedure

poly-Si feedstock with added impurity

directional solidification furnace

ingot & wafers

20th EPVSEC Barcelona 2005, 2AO1.3
5

Experimental procedure

poly-Si feedstock with added impurity

directional solidification furnace industrial in-line cell process SiNx:H coating 14.5 – 15% cell efficiency

ingot & wafers

20th EPVSEC Barcelona 2005, 2AO1.3
6

Titanium
10 ppmw (parts-per-million by weight) of Ti were added to the feedstock
20

JscVoc (W/cm )

2

18

15%rel

25%rel

16 reference S10: Ti 0 20 40 60 80 100

14

position in ingot towards top (%)

20th EPVSEC Barcelona 2005, 2AO1.3
7

Titanium
10 ppmw (parts-per-million by weight) of Ti were added to the feedstock
20 0
IQE (%)

18

16 reference S10: Ti 0 20 40 60 80 100

-50

14

-100

ingot S10, position in ingot: 13% 19% 24% 54% 65% 86% 400 600 800 1000 1200 wavelength (nm)

JscVoc (W/cm )

2

position in ingot towards top (%)

Reduction of Jsc due to strongly reduced red-response in IQE
20th EPVSEC Barcelona 2005, 2AO1.3
8

Aluminum
5 ppmw of Al were added to the feedstock
20

JscVoc (W/cm )

2

16

15%rel

25%rel

12

reference S6: Al 0 20 40 60 80 100

position in ingot towards top (%)

20th EPVSEC Barcelona 2005, 2AO1.3
9

Aluminum
5 ppmw of Al were added to the feedstock
20 0 JscVoc (W/cm )
2

16

IQE (%)

-50

12

reference S6: Al 0 20 40 60 80 100 -100

ingot S6, position in ingot: 14% 30% 53% 69% 400 600 800 1000 1200

position in ingot towards top (%)

wavelength (nm)

Reduction of Jsc again due to reduced red-response in IQE

20th EPVSEC Barcelona 2005, 2AO1.3
10

Analysis of results
15-25% reduction of JscVoc due to 5 ppmw Al or 10 ppmw of Ti is too much to be acceptable. How can we determine the maximum allowable concentration? Can the cell efficiency for other concentrations be modeled and predicted? Is there experimental data to verify such a model?

20th EPVSEC Barcelona 2005, 2AO1.3
11

Model for analysis
5

segregation during ingot growth

4 Cs (a.u.) 3 2 1 0.0 0

1 impurity concentration Cs ∝ 1 x

0.2 0.4 0.6 0.8 1.0 20 40 60 80 100 position in ingot x position in ingot towards top (%)

20th EPVSEC Barcelona 2005, 2AO1.3
12

Model for analysis
1 5 Leff in solar cell (a.u.) Cs (a.u.)

segregation during ingot growth

4 3 2
top 1 0 0.0 0 bottom

1 impurity concentration Cs ∝ 1 x
If impurity dominates recombination

1 1 ∝ ∝ Cs 2 Leff τ eff
Leff ∝ 1 x

0.4 (1-x) 0.6 0.8 1.0 1 √ (square root ofposition in ingot xtowards bottom) position in ingot

0.2

Leff can be determined from the red-response of the IQE
20th EPVSEC Barcelona 2005, 2AO1.3
13

Comparing Leff from IQE with model
Leff follows expected decrease to top of ingot. (exception: bottom of S6)
Leff (m) from IQE 150 S10 (Ti) S6 (Al)

100

50
top 0 0.0 bottom

0.6 0.8 1.0 √(1-x) (square root of position towards bottom of ingot)

0.2

0.4

20th EPVSEC Barcelona 2005, 2AO1.3
14

Comparing Leff from IQE with model
Leff follows expected decrease to top of ingot. (exception: bottom of S6) Conclusion: Relation between feedstock contamination and recombination is linear (no non-linear effects from precipitation, etc.).
Leff (m) from IQE 150 S10 (Ti) S6 (Al)

100

50
top 0 0.0 bottom

0.6 0.8 1.0 √(1-x) (square root of position towards bottom of ingot)

0.2

0.4

20th EPVSEC Barcelona 2005, 2AO1.3
15

Comparing Leff from IQE with model
Leff follows expected decrease to top of ingot. (exception: bottom of S6) Conclusion: Relation between feedstock contamination and recombination is linear (no non-linear effects from precipitation, etc.). (at least for Al, Ti, for the used concentrations and probably lower)
20th EPVSEC Barcelona 2005, 2AO1.3
16

Leff (m) from IQE

150

S10 (Ti) S6 (Al)

100

50
top 0 0.0 bottom

0.6 0.8 1.0 √(1-x) (square root of position towards bottom of ingot)

0.2

0.4

Do-It-Yourself specification of solar grade silicon
1. Construct PC1D model for your cell process, and calculate cell efficiency versus Leff 2. Use 1/Leff2 ∝ CL (CL is impurity concentration in the feedstock) “generic” plot of cell efficiency versus CL (CL in a.u.). 3. One data point (impurity concentration and cell efficiency) to calibrate CL-scale. 4. Choose acceptance level of cell efficiency (cost analysis! e.g. 97%rel efficiency if feedstock 25% lower cost). 5. Read required impurity concentration from plot.

20th EPVSEC Barcelona 2005, 2AO1.3
17

Graphical presentation of D-I-Y feedstock specification
relative to high-purity feedstock
14.5% cell techn. 17% cell techn.

1.0

cell efficiency (%rel)

0.9

0.8

our results: 5 ppmw Al or 10 ppmw Ti

0.7

1 10 100 impurity concentration (a.u.)
20th EPVSEC Barcelona 2005, 2AO1.3

18

Graphical presentation of D-I-Y feedstock specification
relative to high-purity feedstock
14.5% cell techn. 17% cell techn.

1.0

cell efficiency (%rel)

0.9

0.8

our results: 5 ppmw Al or 10 ppmw Ti 60x reduction

0.7

1 10 100 impurity concentration (a.u.)
20th EPVSEC Barcelona 2005, 2AO1.3

19

Graphical presentation of D-I-Y feedstock specification
relative to high-purity feedstock

1.0

spec: 0.1 ppmw Al or 0.2 ppmw Ti

14.5% cell techn. 17% cell techn.

cell efficiency (%rel)

0.9

0.8

our results: 5 ppmw Al or 10 ppmw Ti 60x reduction

0.7

1 10 100 impurity concentration (a.u.)
20th EPVSEC Barcelona 2005, 2AO1.3

20

Conclusions
Clear impact of Ti and Al at ppm level. Dependence of impact on position in ingot modeled according to segregation and linear relation between Leff-2 and Cfeedstock. Extrapolated feedstock specification based on 3%rel cell efficiency reduction: Al: 0.1 ppmw Ti: 0.2 ppmw See the paper for more details, also on carbon, mix of impurities, Fe, and modelling of economics!
20th EPVSEC Barcelona 2005, 2AO1.3
21

Thank you for your attention
Acknowledgements Oyvind Mjs, NTNU Trondheim ScanArc, Scanwafer, HCT EC for contracts SOLSILC, SPURT, and SISI Coauthors: Petra Manshanden, Paul Wyers (ECN Solar Energy), Eivind vrelid, Ola Raaness, Aud Waernes (Sintef), Benno Wiersma (Sunergy)

22

22

20th EPVSEC Barcelona 2005, 2AO1.3 20th EPVSEC Barcelona 2005, 2AO1.3


相关文章:
认知
等低效率电池作用尤其明显 PECVD 钝化作用 由于太阳电池级硅材料中不可避免的含有大量的杂质和缺陷,导致硅 中少子寿命及扩散长度降低从而影响电池的转换效率 H 的...
硅材料中英文对照表
P-type 回收硅片 碎电池片 N型 P型 (欧姆-厘米...Solar Grade Silicon 太阳级硅 28、 Minor Carrier...又称 P 型杂质(硅 中的硼、铝、镓、铟等杂质...
电池一厂培训考核试卷(1)
4、 制绒的目的是:去除表面污垢和金属杂质、去除...使上下电极形成良好的欧姆接触;提高电池片的转换效率...太阳电池片产业链的分布流程? 答:太阳级硅材料...
硅片质量对太阳能电池性能的影响
2. 单晶硅片质量对电池性能的影响 单晶硅由于其本身内部完整的晶体结构,其电池效率明显高于多晶硅电池。然而,单晶 内部杂质和晶体缺陷的存在会严重影响太阳能电池的...
太阳电池材料试题
级光伏/材料工程专业各班 出卷人:刘仪柯 批准人: 《太阳电池硅材料生产技术(...三、单项选择题(20 分,每题 2 分) 1、在硅中,大多数金属杂质的分凝系数...
硅中的杂质 1
通常,不同的半导体的应用对杂质的 要求有不同的范围。而对于太阳电池应用来...纯硅的杂质浓度与电阻率的关系 在半导体电子级的硅材料中,由于通常都是先将...
温度对多晶硅太阳电池性能影响的研究
大功率点电流Im,填充因子FF,以及电池单体 的串联电阻Rs、并联电阻Rsh和转换效率...由于冶金级硅比太阳级硅的杂质、缺陷含量高,#1电 池的Voc和Isc随温度的改变比...
晶硅太阳电池效率提升方向及影响各电性能参数的因素
硅太阳电池效率提升方向及影响各电性能参数的因素_能源/化工_工程科技_专业资料...p, 式中 NA 是受主杂质 浓度;而在 n 形材料中, n ? ND 和 p ? n ...
影响太阳能电池效率因素
影响太阳电池效率因素_能源/化工_工程科技_专业...杂质为电子空穴对的复合提供了能级陷阱,增加了非...晶硅太阳电池效率提升方... 20页 2下载券 影响...
太阳能电池重点答案(前4章)
现代太阳电池,转换效率达到 6%,这是太阳电池...答:半导体中的杂质和缺陷会在禁带间隙中产生允许能级...对硅太阳电池来说,经由陷阱的复合(SRH)为主要的...
更多相关标签:
太阳能电池转换效率 | 太阳能电池板转换效率 | 太阳能电池板效率 | 太阳能电池效率图 | 太阳能电池的转换效率 | 太阳能电池效率计算 | 效率最高的太阳能电池 | 钙钛矿太阳能电池效率 |