当前位置:首页 >> 能源/化工 >>

磁性氧化铁纳米颗粒及其在MRI中的应用


Contents
前言
第一章 阿瑞匹坦体外分析方法的建立和理化性质研究 第二章 阿瑞匹坦纳米混悬剂的制备及药剂学性质研究 第三章 阿瑞匹坦纳米混悬剂的制备及药剂学性质研究 第四章 阿瑞匹坦固体分散体和纳米混悬剂体内药动学研究

第五章 阿瑞匹坦固体分散体和纳米混悬剂离体肠吸收研究
第六章 阿瑞匹坦固体分散体和纳米混悬剂Caco-2细胞跨膜转运研究

前言

第一章阿瑞匹坦体外分析方法的建立及理化性质研究

S

Company Logo

Introduction Structure of MRI functioned magnetic nanoparticles

Introduction Preparation of MRI functioned magnetic nanoparticles

Preparation of the core of the particle

Protection /Stabilization of particles

Functionalization

Protection/Stabilization of Magnetic Particles

Surface Passivation by Mild Oxidation

Surfactant and Polymer Coating
Form a core-shell structure that isolate the core with the environment Precious-Metal Coating Silica Coating Carbon Coating Matrix-Dispersed Magnetic Nanoparticles

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating

● Surfactants or polymers can be chemically anchored or physically
adsorbed on magnetic nanoparticles to form a single or double layer which creates repulsive(mainly as steric repulsion) forces to balance the magnetic and the van der Waals attractive forces acting on the nanoparticles.

● Polymers containing functional groups, such as carboxylic acids,
phosphates, and sulfates, can bind to the surface of magnetite.

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(chemical combination)
Example: FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(chemical combination)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(chemical combination)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)
Example: Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)
Example: Maghemite Nanoparticles Protectively Coated with Poly(ethylene imine) and Poly(ethylene oxide)-block-poly(glutamic acid)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)

Magnetic resonance signal intensity of liver parenchyma of rats in T2-weighted sequences.
A:before injection B:after injection maghemite nanoparticles (0.6 mg of Fe/kg) C:before injection D:after injection Resovist (0.6 mg of Fe/kg)

Protection/Stabilization of Magnetic Particles

Silica Coating



This coating stabilizes the magnetite nanoparticles in two different ways. One is by shielding the magnetic dipole interaction with the silica shell. On the other hand, the silica nanoparticles are negatively charged. Therefore, the silica coating enhances the coulomb repulsion of the magnetic nanoparticles. Silica coatings have several advantages arising from their stability under aqueous conditions (at least if the pH value is sufficiently low), easy surface modification, and easy control of interparticle interactions, both in solution and within structures, through variation of the shell thickness.



Protection/Stabilization of Magnetic Particles

Silica Coating

Protection/Stabilization of Magnetic Particles

Carbon Coating

● ●

Carbon-based materials have many advantages over polymer or silica, such as much higher chemical and thermal stability as well as biocompatibility. Though carbon-coated magnetic nanoparticles have many advantageous properties, such particles are often obtained as agglomerated clusters, owing to the lack of effective synthetic methods, and a low degree of understanding of the formation mechanism. The synthesis of dispersible, carbon-coated nanoparticles in isolated form is currently one of the challenges in this field.

Protection/Stabilization of Magnetic Particles

Matrix-Dispersed Magnetic Nanoparticles

Protection/Stabilization of Magnetic Particles

Matrix-Dispersed Magnetic Nanoparticles

SPIO-loaded Carbon nanotubes

Structural and Physicochemical Characterization

Characterization

Size, Polydispersity, Shape, Surface Characterization

Magnetic Properties Characterization

Structural and Physicochemical Characterization

Size, Polydispersity, Shape, and Surface Characterization
Transmission electron microscope (TEM) High-Resolution Transmission electron microscope(HRTEM)

Structural and Physicochemical Characterization

Size, Polydispersity, Shape, and Surface Characterization

Scanning electron microscope(SEM)

X-Ray diffraction(XRD)
Dynamic light scattering(DLS)

Structural and Physicochemical Characterization

Magnetic Properties Characterization

superparamagnetism Saturation magnetization Coercive field strength Remained magnetic field strength

Structural and Physicochemical Characterization

Magnetic Properties Characterization

T2 relaxivity

Structural and Physicochemical Characterization

Other Properties Characterization

Magnetic content Stability

Acid and alkali resistance

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Example: A novel strategy for surface modification of superparamagnetic iron oxide nanoparticles for lung cancer imaging

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Conclusions and Perspectives
Conclusions
For in vitro and in vivo stabilization, the surfaces of magnetic iron oxide nanoparticles are usually coated with various hydrophilic/amphiphilic polymers. Whereas, for targeted magnetic delivery, the particle surface is derivatized with various proteins, peptides or monoclonal antibodies as ligands to target the cellexpressed surface receptors.
The magnetic nanoparticles have the potential to combine both detection and treatment into a singer process. The drug-coated particles may be used to detect early the inflammation, atherosclerosis, cancer or diabetes through MRI, as well as to deliver cytotoxic drug, for example, directly to tumor cells, thereby minimizing destructive side effect.

Conclusions and Perspectives
Perspectives

Conclusions and Perspectives

Company

LOGO


赞助商链接
相关文章:
超顺磁性四氧化三铁纳米材料在医学方面的应用
超顺磁性 纳米粒子氧化三铁 靶向运输 前言近1O年来,有关纳米药物载体(...(Magnetic resonance imaging,简称MRI)跟踪药物输送过程及其在生物体内的 分布;在...
磁性纳米粒子在生物医学上的应用
2 磁性纳米粒子在生物分离中的应用 2.1 蛋白质和...对 mri 不能 明显改善、同时需要相应的设备能够快速...而相比较超顺磁性 氧化铁是一种新型的造影剂,具有...
氧化铁纳米颗粒在神经元组织工程中的应用
氧化铁纳米颗粒在神经元组织工程中的应用_基础医学_医药卫生_专业资料。脊髓损伤...non-invasively by MRI due to the magnetic properties provided by the IONPs...
超顺磁氧化铁纳米颗粒标记人端粒酶反转录酶基因修饰神...
2095-4344 在体外超顺磁性氧化铁能够高效标记神经 干细胞,经 hTERT 基因修饰后...超顺磁氧化铁纳米颗粒标记人端粒酶反转录酶基因修饰神经干细胞及体外 MRI 成像 ...
造影剂手记
MRI 造影剂分为顺磁性(T1 类型造影剂) ,铁磁性和...12.超顺磁性造影剂一般由纳米氧化铁晶体核与稳定...特定组织中;另一方面,在应用完成后,粒子或粒子的降...
磁性四氧化三铁纳米颗粒作用于前成骨细胞的生物相容性
磁性氧化铁纳米颗粒作用于前成骨细胞的生物相容性_基础医学_医药卫生_专业...性,在医疗领域中,如 MRI 造影增强剂、磁感应热疗基因转染等方面广为运用。 ...
成体内源性神经干细胞及其在脑梗死中激活的MRI活体示踪
成体源性神经干细胞及其在脑梗死中激活的MRI活体示踪_其它考试_资格考试/认证...顺磁性氧化铁纳米颗粒, 使用立体定位仪引导注射入正常成体小鼠及通过线栓法制作...
超顺磁性氧化铁纳米粒子标记成肌细胞方法研究
超顺磁性氧化铁纳米粒子标记成肌细胞方法研究 【摘要】 目的: 使用超顺磁性氧化...方法及其对细胞增殖分化的影响,为临床利用 MRI 技术 无创监测移植细胞在心脏内的...
纳米磁性材料的研究进展
铁氧体纳米粒子分散均匀, 晶粒尺寸均匀, 粒度...磁响应, 可望在生物医学磁性操纵方面有潜在应用...研究人员开 发一种超顺磁性氧化铁新型造影剂,...
磁性纳米四氧化三铁颗粒的化学制备及应用进展
磁性纳米氧化铁颗粒的化学制备及应用进展由于纳米氧化三铁特殊的理化学性质, 使其在实际应用中 越来越广泛,其制备方法和性质的研究也得到了深入的进展。磁性...
更多相关标签: