当前位置:首页 >> 能源/化工 >>

磁性氧化铁纳米颗粒及其在MRI中的应用


Contents
前言
第一章 阿瑞匹坦体外分析方法的建立和理化性质研究 第二章 阿瑞匹坦纳米混悬剂的制备及药剂学性质研究 第三章 阿瑞匹坦纳米混悬剂的制备及药剂学性质研究 第四章 阿瑞匹坦固体分散体和纳米混悬剂体内药动学研究

第五章 阿瑞匹坦固体分散体和纳米混悬剂离体肠吸收研究
第六章 阿瑞匹坦固体分散体和纳米混悬剂Caco-

2细胞跨膜转运研究

前言

第一章阿瑞匹坦体外分析方法的建立及理化性质研究

S

Company Logo

Introduction Structure of MRI functioned magnetic nanoparticles

Introduction Preparation of MRI functioned magnetic nanoparticles

Preparation of the core of the particle

Protection /Stabilization of particles

Functionalization

Protection/Stabilization of Magnetic Particles

Surface Passivation by Mild Oxidation

Surfactant and Polymer Coating
Form a core-shell structure that isolate the core with the environment Precious-Metal Coating Silica Coating Carbon Coating Matrix-Dispersed Magnetic Nanoparticles

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating

● Surfactants or polymers can be chemically anchored or physically
adsorbed on magnetic nanoparticles to form a single or double layer which creates repulsive(mainly as steric repulsion) forces to balance the magnetic and the van der Waals attractive forces acting on the nanoparticles.

● Polymers containing functional groups, such as carboxylic acids,
phosphates, and sulfates, can bind to the surface of magnetite.

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(chemical combination)
Example: FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(chemical combination)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(chemical combination)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)
Example: Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)
Example: Maghemite Nanoparticles Protectively Coated with Poly(ethylene imine) and Poly(ethylene oxide)-block-poly(glutamic acid)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)

Magnetic resonance signal intensity of liver parenchyma of rats in T2-weighted sequences.
A:before injection B:after injection maghemite nanoparticles (0.6 mg of Fe/kg) C:before injection D:after injection Resovist (0.6 mg of Fe/kg)

Protection/Stabilization of Magnetic Particles

Silica Coating



This coating stabilizes the magnetite nanoparticles in two different ways. One is by shielding the magnetic dipole interaction with the silica shell. On the other hand, the silica nanoparticles are negatively charged. Therefore, the silica coating enhances the coulomb repulsion of the magnetic nanoparticles. Silica coatings have several advantages arising from their stability under aqueous conditions (at least if the pH value is sufficiently low), easy surface modification, and easy control of interparticle interactions, both in solution and within structures, through variation of the shell thickness.



Protection/Stabilization of Magnetic Particles

Silica Coating

Protection/Stabilization of Magnetic Particles

Carbon Coating

● ●

Carbon-based materials have many advantages over polymer or silica, such as much higher chemical and thermal stability as well as biocompatibility. Though carbon-coated magnetic nanoparticles have many advantageous properties, such particles are often obtained as agglomerated clusters, owing to the lack of effective synthetic methods, and a low degree of understanding of the formation mechanism. The synthesis of dispersible, carbon-coated nanoparticles in isolated form is currently one of the challenges in this field.

Protection/Stabilization of Magnetic Particles

Matrix-Dispersed Magnetic Nanoparticles

Protection/Stabilization of Magnetic Particles

Matrix-Dispersed Magnetic Nanoparticles

SPIO-loaded Carbon nanotubes

Structural and Physicochemical Characterization

Characterization

Size, Polydispersity, Shape, Surface Characterization

Magnetic Properties Characterization

Structural and Physicochemical Characterization

Size, Polydispersity, Shape, and Surface Characterization
Transmission electron microscope (TEM) High-Resolution Transmission electron microscope(HRTEM)

Structural and Physicochemical Characterization

Size, Polydispersity, Shape, and Surface Characterization

Scanning electron microscope(SEM)

X-Ray diffraction(XRD)
Dynamic light scattering(DLS)

Structural and Physicochemical Characterization

Magnetic Properties Characterization

superparamagnetism Saturation magnetization Coercive field strength Remained magnetic field strength

Structural and Physicochemical Characterization

Magnetic Properties Characterization

T2 relaxivity

Structural and Physicochemical Characterization

Other Properties Characterization

Magnetic content Stability

Acid and alkali resistance

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Example: A novel strategy for surface modification of superparamagnetic iron oxide nanoparticles for lung cancer imaging

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Conclusions and Perspectives
Conclusions
For in vitro and in vivo stabilization, the surfaces of magnetic iron oxide nanoparticles are usually coated with various hydrophilic/amphiphilic polymers. Whereas, for targeted magnetic delivery, the particle surface is derivatized with various proteins, peptides or monoclonal antibodies as ligands to target the cellexpressed surface receptors.
The magnetic nanoparticles have the potential to combine both detection and treatment into a singer process. The drug-coated particles may be used to detect early the inflammation, atherosclerosis, cancer or diabetes through MRI, as well as to deliver cytotoxic drug, for example, directly to tumor cells, thereby minimizing destructive side effect.

Conclusions and Perspectives
Perspectives

Conclusions and Perspectives

Company

LOGO


相关文章:
超顺磁氧化铁纳米颗粒标记人端粒酶反转录酶基因修饰神...
2095-4344 在体外超顺磁性氧化铁能够高效标记神经 干细胞,经 hTERT 基因修饰后...超顺磁氧化铁纳米颗粒标记人端粒酶反转录酶基因修饰神经干细胞及体外 MRI 成像 ...
造影剂手记
MRI 造影剂分为顺磁性(T1 类型造影剂) ,铁磁性和...12.超顺磁性造影剂一般由纳米氧化铁晶体核与稳定...特定组织中;另一方面,在应用完成后,粒子或粒子的降...
磁性纳米粒子在生物医学上的应用
2 磁性纳米粒子在生物分离中的应用 2.1 蛋白质和...对 mri 不能 明显改善、同时需要相应的设备能够快速...而相比较超顺磁性 氧化铁是一种新型的造影剂,具有...
纳米四氧化三铁的应用
纳米氧化铁的应用一、 纳米氧化铁的简介四氧化三铁是一种常用的磁性...介质中,采用胶溶化法和添加改性剂及分散剂的方法,通过 在颗粒表面形成吸附双电...
磁性纳米粒子的制备与应用
在最近几年,在磁性纳米粒子上的研究很多都集中在氧化铁及其复合物的性能及应用 上,通过精确控制磁性纳米粒子的合成过程和表面功能基团可以控制复合粒子物理化学性 能...
纳米氧化铁材料
本文介绍了超顺磁氧化铁纳米粒子的制备方法,比较了各种方法的优缺点;评述了 磁性氧化铁纳米粒子在细胞、 蛋白质和核酸分离及生物检测中的应用, 对多功能复合磁性氧...
纳米材料在生物医学中的应用
纳米材料在生物医学中的应用【摘要】纳米材料纳米...【关键词】纳米材料 纳米颗粒 纳米管 生物 医学 ...其使用的纳米微粒主要是纳米级 的超顺磁性氧化铁...
MRI基本知识总结
在磁场中顺磁性物质的磁进动 与组织内质子进动相互...具有较高的自然运动频率,这部分水在 MRI 称为自由...还原铁转化为氧化铁,使血肿的 MRI 信号发生根本的...
超顺磁性氧化铁纳米粒子标记成肌细胞方法研究
超顺磁性氧化铁纳米粒子标记成肌细胞方法研究 【摘要】 目的: 使用超顺磁性氧化...方法及其对细胞增殖分化的影响,为临床利用 MRI 技术 无创监测移植细胞在心脏内的...
磁性纳米颗粒的合成及生物应用
介绍 近年来,相当大努力一直在发展的磁性纳米颗粒...为各种应用,如药物输送、高热, 磁共振成像(MRI)、...兴趣最近致力于掺杂金属发展增强磁性铁氧化物...
更多相关标签: