当前位置:首页 >> 能源/化工 >>

磁性氧化铁纳米颗粒及其在MRI中的应用


Contents
前言
第一章 阿瑞匹坦体外分析方法的建立和理化性质研究 第二章 阿瑞匹坦纳米混悬剂的制备及药剂学性质研究 第三章 阿瑞匹坦纳米混悬剂的制备及药剂学性质研究 第四章 阿瑞匹坦固体分散体和纳米混悬剂体内药动学研究

第五章 阿瑞匹坦固体分散体和纳米混悬剂离体肠吸收研究
第六章 阿瑞匹坦固体分散体和纳米混悬剂Caco-2细胞跨膜转运研究

前言

第一章阿瑞匹坦体外分析方法的建立及理化性质研究

S

Company Logo

Introduction Structure of MRI functioned magnetic nanoparticles

Introduction Preparation of MRI functioned magnetic nanoparticles

Preparation of the core of the particle

Protection /Stabilization of particles

Functionalization

Protection/Stabilization of Magnetic Particles

Surface Passivation by Mild Oxidation

Surfactant and Polymer Coating
Form a core-shell structure that isolate the core with the environment Precious-Metal Coating Silica Coating Carbon Coating Matrix-Dispersed Magnetic Nanoparticles

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating

● Surfactants or polymers can be chemically anchored or physically
adsorbed on magnetic nanoparticles to form a single or double layer which creates repulsive(mainly as steric repulsion) forces to balance the magnetic and the van der Waals attractive forces acting on the nanoparticles.

● Polymers containing functional groups, such as carboxylic acids,
phosphates, and sulfates, can bind to the surface of magnetite.

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(chemical combination)
Example: FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(chemical combination)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(chemical combination)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)
Example: Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)
Example: Maghemite Nanoparticles Protectively Coated with Poly(ethylene imine) and Poly(ethylene oxide)-block-poly(glutamic acid)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)

Magnetic resonance signal intensity of liver parenchyma of rats in T2-weighted sequences.
A:before injection B:after injection maghemite nanoparticles (0.6 mg of Fe/kg) C:before injection D:after injection Resovist (0.6 mg of Fe/kg)

Protection/Stabilization of Magnetic Particles

Silica Coating



This coating stabilizes the magnetite nanoparticles in two different ways. One is by shielding the magnetic dipole interaction with the silica shell. On the other hand, the silica nanoparticles are negatively charged. Therefore, the silica coating enhances the coulomb repulsion of the magnetic nanoparticles. Silica coatings have several advantages arising from their stability under aqueous conditions (at least if the pH value is sufficiently low), easy surface modification, and easy control of interparticle interactions, both in solution and within structures, through variation of the shell thickness.



Protection/Stabilization of Magnetic Particles

Silica Coating

Protection/Stabilization of Magnetic Particles

Carbon Coating

● ●

Carbon-based materials have many advantages over polymer or silica, such as much higher chemical and thermal stability as well as biocompatibility. Though carbon-coated magnetic nanoparticles have many advantageous properties, such particles are often obtained as agglomerated clusters, owing to the lack of effective synthetic methods, and a low degree of understanding of the formation mechanism. The synthesis of dispersible, carbon-coated nanoparticles in isolated form is currently one of the challenges in this field.

Protection/Stabilization of Magnetic Particles

Matrix-Dispersed Magnetic Nanoparticles

Protection/Stabilization of Magnetic Particles

Matrix-Dispersed Magnetic Nanoparticles

SPIO-loaded Carbon nanotubes

Structural and Physicochemical Characterization

Characterization

Size, Polydispersity, Shape, Surface Characterization

Magnetic Properties Characterization

Structural and Physicochemical Characterization

Size, Polydispersity, Shape, and Surface Characterization
Transmission electron microscope (TEM) High-Resolution Transmission electron microscope(HRTEM)

Structural and Physicochemical Characterization

Size, Polydispersity, Shape, and Surface Characterization

Scanning electron microscope(SEM)

X-Ray diffraction(XRD)
Dynamic light scattering(DLS)

Structural and Physicochemical Characterization

Magnetic Properties Characterization

superparamagnetism Saturation magnetization Coercive field strength Remained magnetic field strength

Structural and Physicochemical Characterization

Magnetic Properties Characterization

T2 relaxivity

Structural and Physicochemical Characterization

Other Properties Characterization

Magnetic content Stability

Acid and alkali resistance

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Example: A novel strategy for surface modification of superparamagnetic iron oxide nanoparticles for lung cancer imaging

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Conclusions and Perspectives
Conclusions
For in vitro and in vivo stabilization, the surfaces of magnetic iron oxide nanoparticles are usually coated with various hydrophilic/amphiphilic polymers. Whereas, for targeted magnetic delivery, the particle surface is derivatized with various proteins, peptides or monoclonal antibodies as ligands to target the cellexpressed surface receptors.
The magnetic nanoparticles have the potential to combine both detection and treatment into a singer process. The drug-coated particles may be used to detect early the inflammation, atherosclerosis, cancer or diabetes through MRI, as well as to deliver cytotoxic drug, for example, directly to tumor cells, thereby minimizing destructive side effect.

Conclusions and Perspectives
Perspectives

Conclusions and Perspectives

Company

LOGO


相关文章:
成体内源性神经干细胞及其在脑梗死中激活的MRI活体示踪
成体源性神经干细胞及其在脑梗死中激活的MRI活体示踪_其它考试_资格考试/认证...顺磁性氧化铁纳米颗粒, 使用立体定位仪引导注射入正常成体小鼠及通过线栓法制作...
磁性纳米颗粒在生物医学领域中的应用 2
热疗磁共振成像(MRI) 对比剂等方面的应用,并对其在生 物医学领域的应用前景...吞噬细胞吞噬超顺磁性氧化铁纳米颗粒后会使相应区域 的信号减弱,但肿瘤组织内因...
磁性纳米颗粒的合成及生物应用
介绍 近年来,相当大努力一直在发展的磁性纳米颗粒...为各种应用,如药物输送、高热, 磁共振成像(MRI)、...兴趣最近致力于掺杂金属发展增强磁性铁氧化物...
磁性纳米颗粒研究热点
氧化硅,碳,聚合物等构 建核壳纳米颗粒,能发展...磁性吸波材料是目前研 究和应用最多一类[8]。 将类似铁氧体的纳米磁性材料放入涂料中, 能够使涂料...
四氧化三铁研究小论文
主要集中在纳米级四氧化颗粒的制备与性质, 所以...具有良好的导电性和强磁性,成为了一种广泛应用的...MRI 造影剂 原理:Fe3O4 磁性纳米颗粒的纳米尺寸使...
磁性纳米颗粒材料
而且裸露金属纳米颗粒化学活 性很高,很容易就在空气中就被氧化,导致磁性损失和分散性。所以对于很多应用来说,怎 么发展出一种办法, 在制备磁性颗粒过程中和过程...
磁性纳米粒子在生物医学上的应用
2 磁性纳米粒子在生物分离中的应用 2.1 蛋白质和...对 mri 不能 明显改善、同时需要相应的设备能够快速...而相比较超顺磁性 氧化铁是一种新型的造影剂,具有...
磁性纳米粒子的制备与应用
在最近几年,在磁性纳米粒子上的研究很多都集中在氧化铁及其复合物的性能及应用 上,通过精确控制磁性纳米粒子的合成过程和表面功能基团可以控制复合粒子物理化学性 能...
超顺磁性氧化铁纳米粒子标记成肌细胞方法研究
超顺磁性氧化铁纳米粒子标记成肌细胞方法研究 【摘要】 目的: 使用超顺磁性氧化...方法及其对细胞增殖分化的影响,为临床利用 MRI 技术 无创监测移植细胞在心脏内的...
氧化铁纳米颗粒在神经元组织工程中的应用
氧化铁纳米颗粒在神经元组织工程中的应用_基础医学_医药卫生_专业资料。脊髓损伤...non-invasively by MRI due to the magnetic properties provided by the IONPs...
更多相关标签: