当前位置:首页 >> 能源/化工 >>

磁性氧化铁纳米颗粒及其在MRI中的应用


Contents
前言
第一章 阿瑞匹坦体外分析方法的建立和理化性质研究 第二章 阿瑞匹坦纳米混悬剂的制备及药剂学性质研究 第三章 阿瑞匹坦纳米混悬剂的制备及药剂学性质研究 第四章 阿瑞匹坦固体分散体和纳米混悬剂体内药动学研究

第五章 阿瑞匹坦固体分散体和纳米混悬剂离体肠吸收研究
第六章 阿瑞匹坦固体分散体和纳米混悬剂Caco-

2细胞跨膜转运研究

前言

第一章阿瑞匹坦体外分析方法的建立及理化性质研究

S

Company Logo

Introduction Structure of MRI functioned magnetic nanoparticles

Introduction Preparation of MRI functioned magnetic nanoparticles

Preparation of the core of the particle

Protection /Stabilization of particles

Functionalization

Protection/Stabilization of Magnetic Particles

Surface Passivation by Mild Oxidation

Surfactant and Polymer Coating
Form a core-shell structure that isolate the core with the environment Precious-Metal Coating Silica Coating Carbon Coating Matrix-Dispersed Magnetic Nanoparticles

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating

● Surfactants or polymers can be chemically anchored or physically
adsorbed on magnetic nanoparticles to form a single or double layer which creates repulsive(mainly as steric repulsion) forces to balance the magnetic and the van der Waals attractive forces acting on the nanoparticles.

● Polymers containing functional groups, such as carboxylic acids,
phosphates, and sulfates, can bind to the surface of magnetite.

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(chemical combination)
Example: FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(chemical combination)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(chemical combination)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)
Example: Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)
Example: Maghemite Nanoparticles Protectively Coated with Poly(ethylene imine) and Poly(ethylene oxide)-block-poly(glutamic acid)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)

Magnetic resonance signal intensity of liver parenchyma of rats in T2-weighted sequences.
A:before injection B:after injection maghemite nanoparticles (0.6 mg of Fe/kg) C:before injection D:after injection Resovist (0.6 mg of Fe/kg)

Protection/Stabilization of Magnetic Particles

Silica Coating



This coating stabilizes the magnetite nanoparticles in two different ways. One is by shielding the magnetic dipole interaction with the silica shell. On the other hand, the silica nanoparticles are negatively charged. Therefore, the silica coating enhances the coulomb repulsion of the magnetic nanoparticles. Silica coatings have several advantages arising from their stability under aqueous conditions (at least if the pH value is sufficiently low), easy surface modification, and easy control of interparticle interactions, both in solution and within structures, through variation of the shell thickness.



Protection/Stabilization of Magnetic Particles

Silica Coating

Protection/Stabilization of Magnetic Particles

Carbon Coating

● ●

Carbon-based materials have many advantages over polymer or silica, such as much higher chemical and thermal stability as well as biocompatibility. Though carbon-coated magnetic nanoparticles have many advantageous properties, such particles are often obtained as agglomerated clusters, owing to the lack of effective synthetic methods, and a low degree of understanding of the formation mechanism. The synthesis of dispersible, carbon-coated nanoparticles in isolated form is currently one of the challenges in this field.

Protection/Stabilization of Magnetic Particles

Matrix-Dispersed Magnetic Nanoparticles

Protection/Stabilization of Magnetic Particles

Matrix-Dispersed Magnetic Nanoparticles

SPIO-loaded Carbon nanotubes

Structural and Physicochemical Characterization

Characterization

Size, Polydispersity, Shape, Surface Characterization

Magnetic Properties Characterization

Structural and Physicochemical Characterization

Size, Polydispersity, Shape, and Surface Characterization
Transmission electron microscope (TEM) High-Resolution Transmission electron microscope(HRTEM)

Structural and Physicochemical Characterization

Size, Polydispersity, Shape, and Surface Characterization

Scanning electron microscope(SEM)

X-Ray diffraction(XRD)
Dynamic light scattering(DLS)

Structural and Physicochemical Characterization

Magnetic Properties Characterization

superparamagnetism Saturation magnetization Coercive field strength Remained magnetic field strength

Structural and Physicochemical Characterization

Magnetic Properties Characterization

T2 relaxivity

Structural and Physicochemical Characterization

Other Properties Characterization

Magnetic content Stability

Acid and alkali resistance

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Example: A novel strategy for surface modification of superparamagnetic iron oxide nanoparticles for lung cancer imaging

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Conclusions and Perspectives
Conclusions
For in vitro and in vivo stabilization, the surfaces of magnetic iron oxide nanoparticles are usually coated with various hydrophilic/amphiphilic polymers. Whereas, for targeted magnetic delivery, the particle surface is derivatized with various proteins, peptides or monoclonal antibodies as ligands to target the cellexpressed surface receptors.
The magnetic nanoparticles have the potential to combine both detection and treatment into a singer process. The drug-coated particles may be used to detect early the inflammation, atherosclerosis, cancer or diabetes through MRI, as well as to deliver cytotoxic drug, for example, directly to tumor cells, thereby minimizing destructive side effect.

Conclusions and Perspectives
Perspectives

Conclusions and Perspectives

Company

LOGO


相关文章:
超顺磁性四氧化三铁纳米材料在医学方面的应用
由于磁性氧化三 铁生物纳米颗粒的制作简单,直径可达10 nm 以下,具有比表面积...(Magnetic resonance imaging,简称MRI)跟踪药物输送过程及其在生物体内的 分布;在...
纳米氧化铁的制备及应用
详述了纳米氧化铁在磁性材料、透明 颜料、生物医学、催化剂等方面的应用,并对其...景志红等[4]也制备出了菱形、纺锤形 球形等不同形貌的氧化铁纳米颗粒。 水...
磁性纳米粒子的制备与应用
本文简要介绍了磁性纳米颗粒的制备方法,和目前磁性纳 米颗粒在医用载药方面的...在最近几年,在磁性纳米粒子上的研究很多都集中在氧化铁及其复合物的性能及应用 ...
氧化铁纳米颗粒在神经元组织工程中的应用
氧化铁纳米颗粒在神经元组织工程中的应用_基础医学_...期的一篇文章中,作者 介绍了一种新的磁性纤维蛋白...MRI due to the magnetic properties provided by ...
纳米磁性材料在肿瘤治疗中的应用研究进展
特性及磁性材料在肿瘤治疗中的应用前景作了综 述。...氧化钠为沉淀剂制备了不同化学组成的纳米锰锌铁 氧...李丹采用反相微乳液法制备了包裹磁流体纳米颗粒,再经...
纳米氧化铁的制备及应用
粒子具有良好的磁响应性, 采用适当的方法即可得到大小均一的 颗粒,经过表面包覆处理后,可作为超顺磁性氧化铁纳米材料用于磁共振成像, 在疾病的诊断上有重要应用。...
纳米四氧化三铁的应用
纳米氧化铁的应用一、 纳米氧化的简介四氧化三铁是一种常用的磁性...介质中,采用胶溶化法和添加改性剂及分散剂的方法,通过 在颗粒表面形成吸附双电...
纳米颗粒生物应用
磁性纳米颗粒的介绍、制备生物医药应用摘 要 纳米...由氧化铁纳米壳做 包装的一种潜在抗癌药物可以产生...合将会提供多功能纳米探针 核磁共振成像(MRI)光学...
纳米在医学研究中的应用
纳米在医学研究中的应用_化学_自然科学_专业资料。纳米...例如,静脉注射纳米氧化铁造影剂以后,氧化铁颗粒 被...免疫磁性纳米粒的抗癌实验证明,由于兼具磁性和抗体的...
武汉理工大学硕士研究生入学考试纳米药物
一、评价目标要求 1.重点考查纳米技术在制药学应用中的基本原理、常用方法...超顺磁性氧化铁对比剂的增强 MRI 信号对比的原理 应用于磁共振成像的磁性氧化铁...
更多相关标签:
磁性纳米颗粒 | 超顺磁性纳米颗粒 | 超顺磁性纳米氧化铁 | 磁性纳米颗粒电镜 | 纳米磁性氧化铁 | 磁性纳米颗粒工作过程 | 四氧化三铁纳米颗粒 | 氧化铁纳米颗粒 |