当前位置:首页 >> 能源/化工 >>

磁性氧化铁纳米颗粒及其在MRI中的应用


Contents
前言
第一章 阿瑞匹坦体外分析方法的建立和理化性质研究 第二章 阿瑞匹坦纳米混悬剂的制备及药剂学性质研究 第三章 阿瑞匹坦纳米混悬剂的制备及药剂学性质研究 第四章 阿瑞匹坦固体分散体和纳米混悬剂体内药动学研究

第五章 阿瑞匹坦固体分散体和纳米混悬剂离体肠吸收研究
第六章 阿瑞匹坦固体分散体和纳米混悬剂Caco-

2细胞跨膜转运研究

前言

第一章阿瑞匹坦体外分析方法的建立及理化性质研究

S

Company Logo

Introduction Structure of MRI functioned magnetic nanoparticles

Introduction Preparation of MRI functioned magnetic nanoparticles

Preparation of the core of the particle

Protection /Stabilization of particles

Functionalization

Protection/Stabilization of Magnetic Particles

Surface Passivation by Mild Oxidation

Surfactant and Polymer Coating
Form a core-shell structure that isolate the core with the environment Precious-Metal Coating Silica Coating Carbon Coating Matrix-Dispersed Magnetic Nanoparticles

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating

● Surfactants or polymers can be chemically anchored or physically
adsorbed on magnetic nanoparticles to form a single or double layer which creates repulsive(mainly as steric repulsion) forces to balance the magnetic and the van der Waals attractive forces acting on the nanoparticles.

● Polymers containing functional groups, such as carboxylic acids,
phosphates, and sulfates, can bind to the surface of magnetite.

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(chemical combination)
Example: FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(chemical combination)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(chemical combination)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)
Example: Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)
Example: Maghemite Nanoparticles Protectively Coated with Poly(ethylene imine) and Poly(ethylene oxide)-block-poly(glutamic acid)

Protection/Stabilization of Magnetic Particles

Surfactant and Polymer Coating(physical combination)

Magnetic resonance signal intensity of liver parenchyma of rats in T2-weighted sequences.
A:before injection B:after injection maghemite nanoparticles (0.6 mg of Fe/kg) C:before injection D:after injection Resovist (0.6 mg of Fe/kg)

Protection/Stabilization of Magnetic Particles

Silica Coating



This coating stabilizes the magnetite nanoparticles in two different ways. One is by shielding the magnetic dipole interaction with the silica shell. On the other hand, the silica nanoparticles are negatively charged. Therefore, the silica coating enhances the coulomb repulsion of the magnetic nanoparticles. Silica coatings have several advantages arising from their stability under aqueous conditions (at least if the pH value is sufficiently low), easy surface modification, and easy control of interparticle interactions, both in solution and within structures, through variation of the shell thickness.



Protection/Stabilization of Magnetic Particles

Silica Coating

Protection/Stabilization of Magnetic Particles

Carbon Coating

● ●

Carbon-based materials have many advantages over polymer or silica, such as much higher chemical and thermal stability as well as biocompatibility. Though carbon-coated magnetic nanoparticles have many advantageous properties, such particles are often obtained as agglomerated clusters, owing to the lack of effective synthetic methods, and a low degree of understanding of the formation mechanism. The synthesis of dispersible, carbon-coated nanoparticles in isolated form is currently one of the challenges in this field.

Protection/Stabilization of Magnetic Particles

Matrix-Dispersed Magnetic Nanoparticles

Protection/Stabilization of Magnetic Particles

Matrix-Dispersed Magnetic Nanoparticles

SPIO-loaded Carbon nanotubes

Structural and Physicochemical Characterization

Characterization

Size, Polydispersity, Shape, Surface Characterization

Magnetic Properties Characterization

Structural and Physicochemical Characterization

Size, Polydispersity, Shape, and Surface Characterization
Transmission electron microscope (TEM) High-Resolution Transmission electron microscope(HRTEM)

Structural and Physicochemical Characterization

Size, Polydispersity, Shape, and Surface Characterization

Scanning electron microscope(SEM)

X-Ray diffraction(XRD)
Dynamic light scattering(DLS)

Structural and Physicochemical Characterization

Magnetic Properties Characterization

superparamagnetism Saturation magnetization Coercive field strength Remained magnetic field strength

Structural and Physicochemical Characterization

Magnetic Properties Characterization

T2 relaxivity

Structural and Physicochemical Characterization

Other Properties Characterization

Magnetic content Stability

Acid and alkali resistance

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Example: A novel strategy for surface modification of superparamagnetic iron oxide nanoparticles for lung cancer imaging

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Functionalization and Applications of Magnetic Nanoparticles

Conclusions and Perspectives
Conclusions
For in vitro and in vivo stabilization, the surfaces of magnetic iron oxide nanoparticles are usually coated with various hydrophilic/amphiphilic polymers. Whereas, for targeted magnetic delivery, the particle surface is derivatized with various proteins, peptides or monoclonal antibodies as ligands to target the cellexpressed surface receptors.
The magnetic nanoparticles have the potential to combine both detection and treatment into a singer process. The drug-coated particles may be used to detect early the inflammation, atherosclerosis, cancer or diabetes through MRI, as well as to deliver cytotoxic drug, for example, directly to tumor cells, thereby minimizing destructive side effect.

Conclusions and Perspectives
Perspectives

Conclusions and Perspectives

Company

LOGO


相关文章:
造影剂手记
MRI 造影剂分为顺磁性(T1 类型造影剂) ,铁磁性和...12.超顺磁性造影剂一般由纳米氧化铁晶体核与稳定...特定组织中;另一方面,在应用完成后,粒子或粒子的降...
磁性纳米材料在生物医学领域的应用研究
的研究现状及其在神经干细胞移 植中的应用》 哈尔滨...处理后可作为超顺磁性氧化铁纳米材料用于磁共振 成像...MRI 衬度增强剂四方面.磁性纳米颗粒还有很大的发展...
表面修饰对氧化铁纳米粒子类酶活性的影响
氧化铁磁性 纳米粒子的应用方面, 一个体系内同时发挥其多种功能的研究, 是...et al.Development of superparamagnetic nanoparticles for MRI:effect of particle...
超顺磁氧化铁纳米颗粒标记人端粒酶反转录酶基因修饰神...
2095-4344 在体外超顺磁性氧化铁能够高效标记神经 干细胞,经 hTERT 基因修饰后...超顺磁氧化铁纳米颗粒标记人端粒酶反转录酶基因修饰神经干细胞及体外 MRI 成像 ...
磁性纳米粒子的制备与应用
在最近几年,在磁性纳米粒子上的研究很多都集中在氧化铁及其复合物的性能及应用 上,通过精确控制磁性纳米粒子的合成过程和表面功能基团可以控制复合粒子物理化学性 能...
纳米药物阅读材料-集合
MRI)将水、磷脂蛋白质等人体组织中的 氢原子...(直径一般在 40-400nm)超微型超顺磁性氧化铁(...如半导体量子点、纳米金及磁性纳米粒子纳米诊 断试剂...
磁性纳米颗粒的合成及生物应用
介绍 近年来,相当大努力一直在发展的磁性纳米颗粒...为各种应用,如药物输送、高热, 磁共振成像(MRI)、...兴趣最近致力于掺杂金属发展增强磁性铁氧化物...
氧化铁纳米颗粒在神经元组织工程中的应用
氧化铁纳米颗粒在神经元组织工程中的应用_基础医学_医药卫生_专业资料。脊髓损伤...non-invasively by MRI due to the magnetic properties provided by the IONPs...
纳米材料在生物医学中的应用
纳米材料在生物医学中的应用【摘要】纳米材料纳米...由于纳米材料特殊尺寸效应,纳米颗粒、纳米管以及...其使用纳米微粒主要是纳米级 超顺磁性氧化铁...
成体内源性神经干细胞及其在脑梗死中激活的MRI活体示踪
成体源性神经干细胞及其在脑梗死中激活的MRI活体示踪_其它考试_资格考试/认证...顺磁性氧化铁纳米颗粒, 使用立体定位仪引导注射入正常成体小鼠及通过线栓法制作...
更多相关标签:
磁性纳米颗粒 | 超顺磁性纳米氧化铁 | 超顺磁性纳米颗粒 | 磁性纳米颗粒的应用 | 纳米磁性氧化铁 | 磁性纳米颗粒团聚 | 四氧化三铁纳米颗粒 | 氧化锌纳米颗粒 |