当前位置:首页 >> 信息与通信 >>

《通信原理》第六版课件 第7章


通信原理
1

通信原理
第7章数字带通传输系统

2

第7章数字带通传输系统
?

概述
? ?

?

数字调制:把数字基带信号变换为数字带通信号(已调信号) 的过程。 数字带通传输系统:通常把包括调制和解调过程

的数字传输 系统。 数字调制技术有两种方法: ? 利用模拟调制的方法去实现数字式调制; ? 通过开关键控载波,通常称为键控法。 ? 基本键控方式:振幅键控、频移键控、相移键控
1 0 1 1 0 1 1 0 1

t

t

t

振幅键控
?

频移键控

相移键控
3

数字调制可分为二进制调制和多进制调制。

第7章数字带通传输系统
?

7.1 二进制数字调制原理
?

7.1.1 二进制振幅键控(2ASK)
?

基本原理:
?

“通-断键控(OOK)”信号表达式

?

波形
s ?t ?

?Acos? c t, eOOK (t ) ? ? ? 0,
1 0 0

以概率 P 发送“ 1”时 以概率1 ? P 发送“0”时
1

Ts

t

载波
t

2ASK
t

4

第7章数字带通传输系统
?

2ASK信号的一般表达式 e2ASK (t ) ? s?t ?cos ?c t
其中

s(t ) ? ? an g (t ? nTs )
n

Ts - 码元持续时间; g(t) - 持续时间为Ts的基带脉冲波形,通常假设是高 度为1,宽度等于Ts的矩形脉冲; an - 第N个符号的电平取值,若取 概率为 P ? 1, an ? ? 概率为 1 ? P ? 0, 则相应的2ASK信号就是OOK信号。
5

第7章数字带通传输系统
?

2ASK信号产生方法
?

模拟调制法(相乘器法)
二进制 不归零信号

e2 ASK (t )
乘法器

s (t )
键控法

cos ? ct
?

开关电路

cos ? ct

e2 ASK (t )

s (t )
6

第7章数字带通传输系统
?

2ASK信号解调方法
?

非相干解调(包络检波法)
带通 滤波器

e2 ASK (t )

a

全波 整流器

b

低通 滤波器

c

抽样 判决器 定时 脉冲

d
输出

?

相干解调(同步检测法)
带通 滤波器 相乘器 低通 滤波器 抽样 判决器 定时 脉冲 输出

e2 ASK (t )

cos ?ct

7

第7章数字带通传输系统
?

非相干解调过程的时间波形
1 0 0 1

a

t

b

t

c
t
d

1

0

0

1
t

8

第7章数字带通传输系统
?

功率谱密度
2ASK信号可以表示成

e2ASK (t ) ? s?t ?cos ? c t

式中 s(t) -二进制单极性随机矩形脉冲序列 设:Ps (f) - s(t)的功率谱密度

P2ASK (f) - 2ASK信号的功率谱密度
则由上式可得
P2ASK ( f ) ? 1 ?Ps ( f ? f c ) ? Ps ( f ? f c )? 4

由上式可见,2ASK信号的功率谱是基带信号功率谱Ps (f) 的线性搬移(属线性调制)。 知道了Ps (f)即可确定P2ASK (f) 。
9

第7章数字带通传输系统
由6.1.2节知,单极性的随机脉冲序列功率谱的一般表达式为
Ps ( f ) ? f s P(1 ? P) G( f ) ?
2 m ? ??

?

?

f s (1 ? P)G(mf s ) ? ( f ? mf s )

2

式中 fs = 1/Ts

G(f) - 单个基带信号码元g(t)的频谱函数。 对于全占空矩形脉冲序列,根据矩形波形g(t)的频谱特点,对 于所有的m ? 0的整数,有

,故上式可简化为
Ps ? f ? ? f s P(1 ? P) G( f ) ? f s2 (1 ? P) 2 G(0) ? ( f )
2 2

将其代入 得到

1 P2ASK ( f ) ? ?Ps ( f ? f c ) ? Ps ( f ? f c )? 4

10

第7章数字带通传输系统
P2 ASK 1 2 2 ? f s P(1 ? P) G ( f ? f c ) ? G ( f ? f c ) 4

?

?

1 2 2 2 ? f s (1 ? P) G (0) ?? ( f ? f c ) ? ? ( f ? f c )? 4
当概率P =1/2时,并考虑到

G( f ) ? TS Sa(? f TS )

G(0) ? TS
2

则2ASK信号的功率谱密度为 Ts ? sin ? ( f ? f c )Ts P2 ASK ( f ) ? ? 16 ? ? ( f ? f c )Ts ?

sin ? ( f ? f c )Ts ? ? ? ? ( f ? f c )Ts ? ?
2

1 ? ?? ( f ? f c ) ? ? ( f ? f c )? 16
其曲线如下图所示。
11

第7章数字带通传输系统
?

2ASK信号的功率谱密度示意图
P2ASK ? f ?

? fc

f c -2f s

fc ? f s

fc

fc ? f s

f c ? 2f s

f

12

第7章数字带通传输系统
?

从以上分析及上图可以看出:
?

2ASK信号的功率谱由连续谱和离散谱两部分组成;连续 谱取决于g(t)经线性调制后的双边带谱,而离散谱由载波 分量确定。 2ASK信号的带宽是基带信号带宽的两倍,若只计谱的 主瓣(第一个谱零点位置),则有

?

B2 ASK ? 2 f s
式中 fs = 1/Ts 即,2ASK信号的传输带宽是码元速率的两倍。

13

第7章数字带通传输系统
?

7.1.2 二进制频移键控(2FSK)
?

基本原理
?

表达式:在2FSK中,载波的频率随二进制基带信号在f1 和f2两个频率点间变化。故其表达式为
? A cos(?1t ? ? n ), e2FSK (t ) ? ? ?A cos(? 2 t ? ? n ), 发送“ 1 ”时 发送“0”时

14

第7章数字带通传输系统
?

典型波形:
(a )2FSK信号

1

0

1

0

t

(b) s1 ? t ? cos ?1t

t

(c) s2 ? t ? cos ?2t

1

t

?

由图可见,2FSK 信号的波形(a)可以分解为波形(b)和波形 (c),也就是说,一个2FSK信号可以看成是两个不同载 频的2ASK信号的叠加。因此,2FSK信号的时域表达式又 15 可写成

第7章数字带通传输系统
? ? ? ? e2FSK (t ) ? ?? an g (t ? nTs )? cos(?1t ? ? n ) ? ?? a n g (t ? nTs )? cos(? 2 t ? ? n ) ?n ? ?n ? 式中 g(t) - 单个矩形脉冲,

Ts - 脉冲持续时间; 概率为 P ? 1, an ? ? 概率为 1 ? P ? 0,
概率为 1 ? P ? 1, an ? ? 概率为 P ? 0, ?n和?n分别是第n个信号码元(1或0)的初始相位,通

常可令其为零。因此,2FSK信号的表达式可简化为

e2FSK (t ) ? s1 ?t ?cos ?1t ? s2 ?t ?cos ?2 t
16

第7章数字带通传输系统
e2FSK (t ) ? s1 ?t ?cos ?1t ? s2 ?t ?cos ?2 t
式中
?

s1 ?t ? ? ? a n g (t ? nTs )
n

s 2 ?t ? ? ? a n g (t ? nTs )
n

2FSK信号的产生方法
?

采用模拟调频电路来实现:信号在相邻码元之间的相位是连 续变化的。 采用键控法来实现:相邻码元之间的相位不一定连续。
振荡器1
f1

?

选通开关

基带信号 反相器

e2 FSK (t )

相加器

振荡器2 f2

选通开关

17

第7章数字带通传输系统
?

2FSK信号的解调方法
?

非相干解调
带通 滤波器

?1

包络 检波器 定时脉冲

e2 FSK (t )

输出
抽样 判决器

带通 滤波器

?2

包络 检波器

18

第7章数字带通传输系统
?

相干解调
带通 滤波器 低通 滤波器 定时脉冲

?1

相乘器

e2 FSK (t )

cos ?1t cos ? 2 t
带通 滤波器

输出
抽样 判决器

?2

相乘器

低通 滤波器

19

第7章数字带通传输系统
?

其他解调方法:比如鉴频法、差分检测法、过零检测法等。 下图给出了过零检测法的原理方框图及各点时间波形。
a
限幅

b

微分

c

整流

d

e2 FSK (t )

脉冲 展宽

e

低通

f 输出

20

第7章数字带通传输系统
?

功率谱密度
对相位不连续的2FSK信号,可以看成由两个不同载频的 2ASK信号的叠加,它可以表示为

e2 FSK (t ) ? s1 (t ) cos ?1t ? s2 (t ) cos ? 2t
其中,s1(t)和s2(t)为两路二进制基带信号。

据2ASK信号功率谱密度的表示式,不难写出这种2FSK信 号的功率谱密度的表示式:
P2 FSK ( f ) ? 1 1 Ps1 ( f ? f1 ) ? Ps1 ( f ? f1 ) ? Ps2 ( f ? f 2 ) ? Ps2 ( f ? f 2 ) 4 4

?

? ?

?

令概率P = ?,只需将2ASK信号频谱中的fc分别替换为f1和 f2,然后代入上式,即可得到下式:
21

第7章数字带通传输系统
Ts ? sin ? ( f ? f1 )Ts ? P2FSK ( f ) ? 16 ? ? ( f ? f1 )Ts ?
2

sin ? ( f ? f1 )Ts ? ? ? ? ( f ? f1 )Ts ? ?
2

2 2 ? Ts sin ? ( f ? f 2 )Ts sin ? ( f ? f 2 )Ts ? ? ? ? ? 16 ? ? ( f ? f 2 )Ts ? ( f ? f 2 )Ts ? ? ? 1 ? ?? ( f ? f1 ) ? ? ( f ? f1 ) ? ? ( f ? f 2 ) ? ? ( f ? f 2 )? 16

其曲线如下:

22

第7章数字带通传输系统
由上图可以看出:
?

相位不连续2FSK信号的功率谱由连续谱和离散谱组成。其中, 连续谱由两个中心位于f1和f2处的双边谱叠加而成,离散谱位 于两个载频f1和f2处; 连续谱的形状随着两个载频之差的大小而变化,若| f1 – f2 | < fs,连续谱在 fc 处出现单峰;若| f1 – f2 | > fs ,则出现双峰;

?

?

若以功率谱第一个零点之间的频率间隔计算2FSK信号的带宽, 则其带宽近似为 B2FSK ? f 2 ? f1 ? 2 f s 其中,fs = 1/Ts为基带信号的带宽。图中的fc为两个载频的中 心频率。
23

第7章数字带通传输系统
?

7.1.3 二进制相移键控(2PSK)
?

2PSK信号的表达式:
在2PSK中,通常用初始相位0和?分别表示二进制“0” 和“1”。因此,2PSK信号的时域表达式为

e2PSK (t ) ? A cos(? c t ? ? n )
式中,?n表示第n个符号的绝对相位:
?n ? ? 1 ”时 ?? , 发送“
?0, 发送“0”时

因此,上式可以改写为
概率为 P ? A cos ? c t , e2PSK (t ) ? ? ?? A cos ? c t , 概率为 1 ? P
24

第7章数字带通传输系统
由于两种码元的波形相同,极性相反,故2PSK信号可以表述 为一个双极性全占空矩形脉冲序列与一个正弦载波的相乘:

e2PSK (t ) ? s?t ?cos ? c t
s(t ) ? ? an g (t ? nTs )
n

式中

这里,g(t)是脉宽为Ts的单个矩形脉冲,而an的统计特性为
概率为 P ? 1, an ? ? ?? 1, 概率为 1 ? P

即发送二进制符号“0”时(an取+1),e2PSK(t)取0相位;发送
二进制符号“1”时( an取 -1), e2PSK(t)取?相位。这种以载 波的不同相位直接去表示相应二进制数字信号的调制方式, 称为二进制绝对相移方式。
25

第7章数字带通传输系统
?

典型波形
1 0 0 1 1

t

Ts

26

第7章数字带通传输系统
?

2PSK信号的调制器原理方框图
?

模拟调制的方法
s (t )
双极性 不归零 码型变换 乘法器

e2 PSK (t )

cos ?ct
?

键控法
开关电路

cos ?ct

0

e2 PSK (t )

?
s (t )
27

1800 移相

第7章数字带通传输系统
?

2PSK信号的解调器原理方框图和波形图:
带通 滤波器

a

e2 PSK (t )

相乘器

c

低通 滤波器

d

抽样 判决器 定时 脉冲

e
输出

cos ? ct
1 0
a

b
0 1 1

t

Ts

b

t

c

t

d

t

e

1

0

0

1

1
t

28

第7章数字带通传输系统

波形图中,假设相干载波的基准相位与2PSK信号的调制载 波的基准相位一致(通常默认为0相位)。但是,由于在 2PSK信号的载波恢复过程中存在着的相位模糊,即恢复的 本地载波与所需的相干载波可能同相,也可能反相,这种 相位关系的不确定性将会造成解调出的数字基带信号与发 送的数字基带信号正好相反,即“1”变为“0”,“0”变为 “1”,判决器输出数字信号全部出错。这种现象称为2PSK 方式的“倒π”现象或“反相工作”。这也是2PSK方式在实 际中很少采用的主要原因。另外,在随机信号码元序列中, 信号波形有可能出现长时间连续的正弦波形,致使在接收 端无法辨认信号码元的起止时刻。 为了解决上述问题,可以采用7.1.4节中将要讨论的差 分相移键控(DPSK)体制。
29

第7章数字带通传输系统
?

功率谱密度
比较2ASK信号的表达式和2PSK信号的表达式:

2ASK: e2ASK (t ) ? s?t ?cos ?c t
2PSK:

概率为 P ? A cos ? c t , e2PSK (t ) ? ? ?? A cos ? c t , 概率为 1 ? P

可知,两者的表示形式完全一样,区别仅在于基带信号s(t) 不同(an不同),前者为单极性,后者为双极性。因此, 我们可以直接引用2ASK信号功率谱密度的公式来表述 2PSK信号的功率谱,即
P2 PSK ( f ) ? 1 ?Ps ( f ? f c ) ? Ps ( f ? f c )? 4

应当注意,这里的Ps(f)是双极性矩形脉冲序列的功率谱。30

第7章数字带通传输系统
由6.1.2节知,双极性的全占空矩形随机脉冲序列的功率谱 密度为 2 2 Ps ? f ? ? 4 f s P(1 ? P) G( f ) ? f s2 (1 ? 2P) 2 G(0) ? ( f ) 将其代入上式,得 2 2 P2PSK ? f s P(1 ? P) G ( f ? f c ) ? G ( f ? f c )

?

?

1 2 2 2 ? f s (1 ? 2 P) G (0) ?? ( f ? f c ) ? ? ( f ? f c )? 4

若P =1/2,并考虑到矩形脉冲的频谱: G( f ) ? TS Sa(? f TS ) G(0) ? TS 则2PSK信号的功率谱密度为
2 ? T sin ? ( f ? f c )Ts sin ? ( f ? f c )Ts P2 PSK ( f ) ? s ? ? 4 ? ? ( f ? f c )Ts ? ( f ? f c )Ts ? 2

? ? ? ?

31

第7章数字带通传输系统
?

功率谱密度曲线

P2PSK ? f ?

? fc

fc ? f s

fc

fc ? f s

f

从以上分析可见,二进制相移键控信号的频谱特性与 2ASK的十分相似,带宽也是基带信号带宽的两倍。区别 仅在于当P=1/2时,其谱中无离散谱(即载波分量),此 时2PSK信号实际上相当于抑制载波的双边带信号。因此, 它可以看作是双极性基带信号作用下的调幅信号。
32

第7章数字带通传输系统
?

7.1.4 二进制差分相移键控(2DPSK)
?

2DPSK原理
?

?

2DPSK是利用前后相邻码元的载波相对相位变化传递 数字信息,所以又称相对相移键控。 假设??为当前码元与前一码元的载波相位差,定义数 字信息与?? 之间的关系为

于是可以将一组二进制数字信息与其对应的2DPSK信 号的载波相位关系示例如下:
二进制数字信息: 或 2DPSK信号相位:?0? ? 0 0 ? ? ? 0 ? ? 1 1 0 1 0 0 1 1 0

?0, 表示数字信息“0” ?? ? ? ??, 表示数字信息“1”

?? ?

0 ? ? 0 0 0 ? 0 0

33

第7章数字带通传输系统
二进制数字信息: 或 2DPSK信号相位:?0? ? 0 1 1 0 1 0 0 ? ? 0 0 0 1 1 0 0

?? ?

0 ? ? ? 0 ? ? 0 ? 0

相应的2DPSK信号的波形如下:
(a )绝对码
(b)相对码

1 0
参考

1 0

0 0

1 1

0 1

1

(c)2DPSK

t

由此例可知,对于相同的基带信号,由于初始相位不同,

2DPSK信号的相位可以不同。即2DPSK信号的相位并不直接
代表基带信号,而前后码元的相对相位才决定信息符号。34

第7章数字带通传输系统
?

数字信息与??之间的关系也可定义为

1” ? 0, 表示数字信息“ ?? ? ? ??, 表示数字信息“0”
?

2DPSK信号的矢量图

? /2
参考相位
?? / 2

? /2

参考相位

参考相位

参考相位
?? / 2

(a) A方式

(b) B方式

在B方式中,当前码元的相位相对于前一码元的相位改变

??/2。因此,在相邻码元之间必定有相位突跳。在接收
端检测此相位突跳就能确定每个码元的起止时刻。
35

第7章数字带通传输系统
?

2DPSK信号的产生方法
1 0
参考

(a)绝对码
(b)相对码

1 0

0 0

1 1

0 1

1

(c)2DPSK

t

由上图可见,先对二进制数字基带信号进行差分编码, 即把表示数字信息序列的绝对码变换成相对码(差分 码),然后再根据相对码进行绝对调相,从而产生二进 制差分相移键控信号。

上图中使用的是传号差分码,即载波的相位遇到原数字 36 信息“1”变化,遇到“0”则不变。

第7章数字带通传输系统
?

2DPSK信号调制器原理方框图
开关电路

cos ?ct

0

e2 DPSK (t )

?
s (t )
码变换

1800 移相

差分码可取传号差分码或空号差分码。其中,传号差分码 的编码规则为 bn ? an ? bn?1 式中,⊕为模2加,bn-1为bn的前一码元,最初的bn-1可任意 设定。 上式的逆过程称为差分译码(码反变换),即 an ? bn ? bn?1 37

第7章数字带通传输系统
?

2DPSK信号的解调方法之一
?

相干解调(极性比较法)加码反变换法
?

原理:先对2DPSK信号进行相干解调,恢复出相对码, 再经码反变换器变换为绝对码,从而恢复出发送的二 进制数字信息。在解调过程中,由于载波相位模糊性 的影响,使得解调出的相对码也可能是“1”和“0”倒 置,但经差分译码(码反变换)得到的绝对码不会发 生任何倒置的现象,从而解决了载波相位模糊性带来 的问题。

38

第7章数字带通传输系统
?

2DPSK的相干解调器原理图和各点波形
带通 滤波器

e2 DPSK (t )

a
相乘器

c

低通 滤波器

d

e
抽样 判决器 定时 脉冲 码反 变换器

f
输出

cos ? c t b
1 1 0

1

0

a

t

b

t

c
t

d

t

e
f

0

1 1

0 1

0 0

1 1

1 (相对码) 0 (绝对码)

39

第7章数字带通传输系统
?

2DPSK信号的解调方法之二:差分相干解调(相位比较)法
e2 DPSK (t )
带通 滤波器

a
相乘器

c
低通 滤波器

d

e
抽样 判决器 输出 定时 脉冲

延迟Ts
1 1

b
0 1 0

a

t

b

t

c
t

d

t

e

1

1

1

40

第7章数字带通传输系统
?

用这种方法解调时不需要专门的相干载波,只需由收到的

2DPSK信号延时一个码元间隔,然后与2DPSK信号本身相乘。

相乘器起着相位比较的作用,相乘结果反映了前后码元的相
位差,经低通滤波后再抽样判决,即可直接恢复出原始数字 信息,故解调器中不需要码反变换器。

?

2DPSK系统是一种实用的数字调相系统,但其抗加性白噪 声性能比2PSK的要差。

41

第7章数字带通传输系统
?

功率谱密度

从前面讨论的2DPSK信号的调制过程及其波形可以知道, 2DPSK可以与2PSK具有相同形式的表达式。所不同的 是2PSK中的基带信号s(t)对应的是绝对码序列;而 2DPSK中的基带信号s(t)对应的是码变换后的相对码序 列。因此,2DPSK信号和2PSK信号的功率谱密度是完 全一样的。信号带宽为
B2DPSK ? B2PSK ? 2 f s

与2ASK的相同,也是码元速率的两倍。

42

第7章数字带通传输系统
?

7.2 二进制数字调制系统的抗噪声性能
?

概述
通信系统的抗噪声性能是指系统克服加性噪声影响 的能力。在数字通信系统中,信道噪声有可能使传 输码元产生错误,错误程度通常用误码率来衡量。 因此,与分析数字基带系统的抗噪声性能一样,分 析数字调制系统的抗噪声性能,也就是求系统在信 道噪声干扰下的总误码率。 ? 分析条件:假设信道特性是恒参信道,在信号的频 带范围内具有理想矩形的传输特性(可取其传输系数 为K);信道噪声是加性高斯白噪声。并且认为噪声 只对信号的接收带来影响,因而分析系统性能是在 接收端进行的。
?

43

第7章数字带通传输系统
?

7.2.1 二进制振幅键控(2ASK)系统的抗噪声性能
?

同步检测法的系统性能
?

分析模型
带通 滤波器 相乘器 低通 滤波器 抽样 判决器 输出

发送端

信道

sT (t ) ni (t )

yi (t )

y (t )

2 cos ?ct

x (t )

Pe

定时 脉冲

44

第7章数字带通传输系统
?

计算: 设在一个码元的持续时间Ts内,其发送端输出的信号波形 可以表示为

式中

?uT (t ) sT (t ) ? ? ?0
? A cos ? c t uT (t ) ? ? ? 0

发送“ 1”时 发送“0”时
0 ? t ? TS 其它t

则在每一段时间(0, Ts)内,接收端的输入波形为

?ui (t ) ? ni (t ) yi (t ) ? ? ? ni (t )

发送“ 1”时 发送“0”时

式中,ui(t)为uT(t)经信道传输后的波形。
45

第7章数字带通传输系统
为简明起见,认为信号经过信道传输后只受到固定衰减,未 产生失真(信道传输系数取为K),令a =AK,则有
?a cos ? c t u i (t ) ? ? 0 ? 0 ? t ? TS 其它t

而ni(t)是均值为0的加性高斯白噪声。 假设接收端带通滤波器具有理想矩形传输特性,恰好使 信号无失真通过,则带通滤波器的输出波形为
? ui (t ) ? n(t ) y (t ) ? ? ? n(t ) 发送“ 1”时 发送“0”时

式中,n(t)是高斯白噪声ni(t)经过带通滤波器的输出噪声。
46

第7章数字带通传输系统
n(t ) ? nc (t ) cos ? c t ? ns (t ) sin ? c t
于是有

由第3章随机信号分析可知, n(t)为窄带高斯噪声,其均值为0, 方差为?n2,且可表示为

?a cos ? c t ? nc (t ) cos ? c t ? ns (t ) sin ? c t y (t ) ? ? nc (t ) cos ? c t ? ns (t ) sin ? c t ? 1”时 ?[a ? nc (t )] cos ?c t ? ns (t ) sin ? c t 发“ ?? 发“0”时 ?nc (t ) cos ? c t ? ns (t ) sin ?c t

y(t)与相干载波2cos ?ct相乘,然后由低通滤波器滤除高频分 量,在抽样判决器输入端得到的波形为
?a ? nc (t ), 发送“1”符号 x (t ) ? ? 发送“0”符号 ? nc (t ),

47

第7章数字带通传输系统
?a ? nc (t ), 发送“1”符号 x (t ) ? ? 发送“0”符号 ? nc (t ),

式中,a为信号成分,由于nc(t)也是均值为0、方差为?n2的高 斯噪声,所以x(t)也是一个高斯随机过程,其均值分别为a (发“1”时)和0(发“0”时),方差等于?n2 。 设对第k个符号的抽样时刻为kTs,则x(t)在kTs时刻的抽样值

发送“ 1”时 ? a ? nc (kTs ) x ? x ?kTs ? ? ? 发送“0”时 ? nc (kTs ) 是一个高斯随机变量。因此,发送“1”时,x的一维概率密 度函数为 ? ( x ? a)2 ? 1 f1 ( x ) ? exp ?? ? 2 2 ? 2? ? n n ? ?
48

第7章数字带通传输系统
发送“0”时,x的一维概率密度函数为
? x2 ? f 0 ( x) ? exp ?? 2? 2 ? 2? ? n n ? ? 1

f1(x)和f0(x)的曲线如下:

若取判决门限为b,规定判决规则为 x > b时,判为“1” x ? b时,判为“0”
49

第7章数字带通传输系统
判决规则为:x > b时,判为“1” x ? b时,判为“0” 则当发送“1”时,错误接收为“0”的概率是抽样值x小于或 等于b的概率,即 b ? b?a ? 1 P(0 / 1) ? P( x ? b) ? ? f1 ( x)dx ? 1 ? erfc ? ? ?? ? ? 2 ? 2? n ? 2 ? ?u 2 式中 erfc ?x ? ? ? e du

?

x

同理,发送“0”时,错误接收为“1”的概率是抽样值x大于 b的概率,即 ? ? b ? 1 ? P(1 / 0) ? P( x ? b) ? ? f 0 ( x)dx ? erfc ? ? ? b 2 ? 2? n ?
50

第7章数字带通传输系统
设发“1”的概率P(1)为,发“0”的概率为P(0) ,则同步检测 时2ASK系统的总误码率为

? P(1) ? f1 ( x )dx ? P(0) ? f 0 ( x )dx
?? b

b

?

上式表明,当P(1) 、 P(0)及f1(x)、f0(x)一定时,系统的误码 率Pe与判决门限b的选择密切相关。

51

第7章数字带通传输系统
?

最佳门限 ? 从曲线求解

从阴影部分所示可见,误码率Pe等于图中阴影的面积。 若改变判决门限b,阴影的面积将随之改变,即误码率Pe

的大小将随判决门限b而变化。进一步分析可得,当判决
门限b取P(1)f1(x)与P(0)f0(x)两条曲线相交点b*时,阴影的 面积最小。即判决门限取为b*时,系统的误码率Pe最小。

这个门限b*称为最佳判决门限。
52

第7章数字带通传输系统
?

从公式求解 最佳判决门限也可通过求误码率Pe关于判决门限b的最小 值的方法得到,令 ?Pe ?0 ?b 得到 P(1) f1 (b* ) ? P(0) f 0 (b* ) ? 0 即 * *
P(1) f1 (b ) ? P(0) f 0 (b )

将f1(x)和f0(x)的公式代入上式,得到
? (b* ? a ) 2 ? ? (b* ) 2 ? P(1) P(0) exp ?? exp ?? ?? 2 2 ? 2 ? 2 ? 2? ? n 2? ? n n n ? ? ? ?

化简上式,整理后可得: 2 ? a P(0) b * ? ? n ln 2 a P(1) 此式就是所需的最佳判决门限。
53

第7章数字带通传输系统
2 a ?n P(0) b ? ? ln 2 a P(1) *

若发送“1”和“0”的概率相等,则最佳判决门限为 b* = a / 2 此时,2ASK信号采用相干解调(同步检测)时系统的误 码率为 ? r? 1 ? Pe ? erfc ? ? ? 2 4 ? ? 式中 a2 r? 2 2? n 为解调器输入端的信噪比。 当r >> 1,即大信噪比时,上式可近似表示为 1 ?r / 4 Pe ? e ?r

54

第7章数字带通传输系统
?

包络检波法的系统性能
?

分析模型:只需将相干解调器(相乘-低通)替换为包络 检波器(整流-低通),即可以得到2ASK采用包络检波法 的系统性能分析模型。 计算 显然,带通滤波器的输出波形y(t)与相干解调法的相同:
?[a ? nc (t )] cos ?ct ? ns (t ) sin ?ct 发“1”时 y(t ) ? ? 发“0”时 ?nc (t ) cos ?ct ? ns (t ) sin ?ct

?

当发送“1”符号时,包络检波器的输出波形为
V (t ) ? [a ? nc (t )]2 ? ns2 (t )

当发送“0”符号时,包络检波器的输出波形为
2 V ( t ) ? nc (t ) ? ns2 (t )

55

第7章数字带通传输系统
由3.6节的讨论可知,发“1”时的抽样值是广义瑞利型随 机变量;发“0”时的抽样值是瑞利型随机变量,它们的一维

概率密度函数分别为

? aV f1 (V ) ? 2 I 0 ? 2 ?n ? ? ? n V
f 0 (V ) ? V

? ?(V 2 ?a 2 ) / 2? n2 ? ?e ?

?

2 n

e

2 ?V 2 / 2? n

式中,?n2为窄带高斯噪声n(t)的方差。

56

第7章数字带通传输系统
设判决门限为b ,规定判决规则为 抽样值V > b 时,判为“1” 抽样值V < b 时,判为“0” 则发送“1”时错判为“0”的概率为

? 1? ?

?

b

? aV ? ?(V 2 ? a 2 ) / 2? n2 I ? 2? e dV 2 0? ? ?n ??n ? V

上式中的积分值可以用Marcum Q函数计算,Marcum Q函数 的定义是
Q(? , ? ) ? ? tI 0 ?? t ?e
?
? ?( t 2 ?? 2 ) / 2

dt

57

第7章数字带通传输系统
Q(? , ? ) ? ? tI 0 ?? t ?e
?
? ?( t 2 ?? 2 ) / 2

dt

令上式中 ? ?

a

?n

,? ?

b

?n

,t ?

V

?n

则上面的P(0/1)公式可借助Marcum Q函数表示为

P(0 / 1) ? 1 ? Q(
式中,

a

?n ?n

,

b

) ? 1 ? Q( 2r , b0 )

r = a2 / (2?n2)为信号噪声功率比; b0 =b /?n 为归一化门限值。
58

第7章数字带通传输系统
同理,当发送“0”时错判为“1”的概率为

P(1 / 0) ? P(V ? b) ? ? f 0 (V )dV

?

??

?

V

b

b

?

2 n

e

2 ?V 2 / 2? n

dV ? e

2 ?b2 / 2? n

?e

2 ?b0 /2

故系统的总误码率为

Pe ? P(1) P(0 / 1) ? P(0) P(1 / 0)
? P(1) 1 ? Q( 2r , b0 ) ? P(0)e
当P(1) = P(0)时,有

?

?

2 ? b0 /2

1 1 ?b02 / 2 Pe ? 1 ? Q( 2r , b0 ) ? e 2 2
59

?

?

第7章数字带通传输系统
1 1 ?b02 / 2 Pe ? 1 ? Q( 2r , b0 ) ? e 2 2
上式表明,包络检波法的系统误码率取决于信噪比r和归 一化门限值b0。按照上式计算出的误码率Pe等于下图中阴影 面积的一半。由图可见,若b0变化,阴影部分的面积也随之 而变;当b0处于f1(V)和f0(V)两条曲线的相交点b0*时,阴影部 分的面积最小,即此时系统的总误码率最小。 b0*为归一化 最佳判决门限值。

?

?

60

第7章数字带通传输系统
?

最佳门限 最佳门限也可通过求极值的方法得到,令

?Pe ?0 ?b
可得

P(1) f1 (b* ) ? P(0) f 0 (b* )

当P(1) = P(0)时,有

f 1 ( b* ) ? f 0 ( b * )

即f1(V)和f0(V)两条曲线交点处的包络值V就是最佳判决门限 值,记为b*。 b*和归一化最佳门限值b0*的关系为b* = b0*?n 。 由f1(V)和f0(V)的公式和上式,可得出

? ab* a2 r ? 2 ? ln I 0 ? ? σ2 2σ n ? n

? ? ? ?

61

第7章数字带通传输系统
? ? ? ? 上式为一超越方程,求解最佳门限值的运算比较困难, 1 1 下面给出其近似解为 2 2 2 ? ab* a2 r ? 2 ? ln I 0 ? ? σ2 2σ n ? n

a / 2, ? ? 因此有 b ? ? ? ? 2? n
*

a ? 8? n ? a? 4? b ? ?1 ? 2 ? ? ?1 ? ? 2? a ? 2? r ? r ?? 1时
*

r ?? 1时

而归一化最佳门限值b0*为

? r ?? 1时 ? r / 2, b ? ?? ?n ? r ?? 1时 ? 2
* 0

b*

对于任意的信噪比r, b0*介于21/2和(r/2)1/2之间。
62

第7章数字带通传输系统
?

实际工作情况 在实际工作中,系统总是工作在大信噪比的情况下,因此最 佳门限应取 b* ? r
0

2

a 即 2 ? r ? 1 ?r4 1 ?? e 此时系统的总误码率为 Pe ? erfc ? ? ? 4 ? 4? 2 当r ? ? 时,上式的下界为 1 ?r4 Pe ? e 2 b* ?

将上式和同步检测法(即相干解调)的误码率公式想比较可 以看出:在相同的信噪比条件下,同步检测法的抗噪声性能 优于包络检波法,但在大信噪比时,两者性能相差不大。然 而,包络检波法不需要相干载波,因而设备比较简单。另外, 包络检波法存在门限效应,同步检测法无门限效应。 63

第7章数字带通传输系统
[例7.2.1] 设有一2ASK信号传输系统,其码元速率为RB = 4.8 ? 106波特,发“1”和发“0”的概率相等,接收端分别采用同步 检测法和包络检波法解调。已知接收端输入信号的幅度a = 1 mV,信道中加性高斯白噪声的单边功率谱密度n0 = 2 ? 10-15 W/Hz。试求 (1) 同步检测法解调时系统的误码率; (2) 包络检波法解调时系统的误码率。 【解】(1) 根据2ASK信号的频谱分析可知,2ASK信号所需的 传输带宽近似为码元速率的两倍,所以接收端带通滤波器带 宽为 B ? 2RB ? 9.6 ? 10 6 Hz 带通滤波器输出噪声平均功率为 2 ?n ? n 0 B ? 1.92 ? 10 ?8 W

a2 1 ? 10 ?6 信噪比为 r ? ? ? 26 ?? 1 2 ?8 2? n 2 ? 1.92 ? 10

64

第7章数字带通传输系统
于是,同步检测法解调时系统的误码率为
Pe ? 1

?r

e

? r/ 4

?

1 3.1416 ? 26

? e ?6.5 ? 1.66 ? 10 ?4

包络检波法解调时系统的误码率为 1 ? r 4 1 ?6.5 Pe ? e ? e ? 7.5 ? 10 ?4 2 2 可见,在大信噪比的情况下,包络检波法解调性能接近同 步检测法解调性能。

65

第7章数字带通传输系统
?

7.2.2 二进制频移键控(2FSK)系统的抗噪声性能
?

同步检测法的系统性能
?

分析模型
带通 滤波器

?1

相乘器

低通 滤波器 定时 脉冲 低通 滤波器

x1 (t )
抽样 判决器 输出

发送端

信道

yi (t )
带通 滤波器

y1 (t )

2 cos ?1t
相乘器

sT (t ) ni (t )

Pe

?2

x2 ( t )

y2 (t )

2 cos ? 2t

66

第7章数字带通传输系统
?

分析计算 设“1”符号对应载波频率f1(?1),“0” 符号对应载波频 率f2 (?2),则在一个码元的持续时间Ts内,发送端产生 的2FSK信号可表示为 1”时 ? u (t ) 发送“ sT (t ) ? ? 1T ?u 0T (t ) 发送“0”时 式中
? A cos ?1t 0 ? t ? TS u1T (t ) ? ? 0 其它t ?

? A cos ? 2 t 0 ? t ? TS u 0T (t ) ? ? 0 其它t ?

67

第7章数字带通传输系统
因此,在时间(0, Ts)内,接收端的输入合成波形为
1”时 ? Ku1T (t ) ? ni (t ) 发送“ yi (t ) ? ? ?Ku 0T (t ) ? ni (t ) 发送“0”时



1”时 ? a cos ?1t ? ni (t ), 发送“ yi ?t ? ? ? ?a cos ? 2 t ? ni (t ), 发送“0”时

式中,ni (t)为加性高斯白噪声,其均值为0。

68

第7章数字带通传输系统
在分析模型图中,解调器采用两个带通滤波器来区分中 心频率分别为f1和f2的信号。中心频率为f1的带通滤波器只允 许中心频率为f1的信号频谱成分通过,而滤除中心频率为f2的 信号频谱成分;中心频率为f2的带通滤波器只允许中心频率 为f2的信号频谱成分通过,而滤除中心频率为f1的信号频谱成 分。这样,接收端上下支路两个带通滤波器的输出波形和分 别为 1”时 ?a cos ?1t ? n1 (t ) 发送“
y1 (t ) ? ? ? n1 (t ) 发送“0”时
发送“ 1”时 ? n2 (t ) y 2 (t ) ? ? ?a cos ? 2 t ? n2 (t ) 发送“0”时

式中,n1(t)和n2(t)分别为高斯白噪声ni(t)经过上下两个带通滤 波器的输出噪声——窄带高斯噪声,其均值同为0,方差同 69 为?n2,只是中心频率不同而已,即

第7章数字带通传输系统
n1 (t ) ? n1c (t ) cos ?1t ? n1s (t ) sin ?1t n2 (t ) ? n2c (t ) cos ?2 t ? n2 s (t ) sin ?2 t
现在假设在时间(0, Ts)内发送“1”符号(对应?1),则上下 支路两个带通滤波器的输出波形分别为 y1 (t ) ? [a ? n1c (t )] cos ?1t ? n1s (t ) sin ?1t

y2 (t ) ? n2c (t ) cos ? 2t ? n2 s (t ) sin ? 2t
它们分别经过相干解调后,送入抽样判决器进行比较。比较 的两路输入波形分别为

上支路 x1 (t ) ? a ? n1c (t ) 下支路 x2 (t ) ? n2c (t )
式中,a 为信号成分,n1c(t)和n2c(t)均为低通型高斯噪声,其 均值为零,方差为?n2 。
70

第7章数字带通传输系统
因此,x1(t)和x2(t)抽样值的一维概率密度函数分别为
? ( x1 ? a ) 2 ? f ( x1 ) ? exp ?? ? 2 2 ? 2? ? n n ? ? 1
2 ? x2 ? f ( x2 ) ? exp ?? 2? 2 ? 2? ? n n ? ? 当x1(t)的抽样值x1小于x2(t)的抽样值x2时,判决器输出“0”符

1

号,造成将“1”判为“0”的错误,故这时错误概率为 P(0 / 1) ? P( x1 ? x2 ) ? P( x1 ? x2 ? 0) ? P( z ? 0)

式中,z = x1 – x2,故z是高斯型随机变量,其均值为a,方差 为?z2 = 2 ?n2 。

71

第7章数字带通传输系统
设z的一维概率密度函数为f(z),则由上式得到
P(0 / 1) ? P( z ? 0) ? ?
0 ??

1 f ( z )dz ? 2? ? z

? r? 1 ? ( x ? a) 2 ? ? ? ?dz ? erfc ? 2 ??? exp ? ? ? 2 ? 2? ? 2? z ?
0

同理可得,发送“0”错判为“1”的概率
P(1 / 0) ? P( x1 ? x2 ) ? ? r? 1 ? erfc ? ? ? 2 ? 2?

显然,由于上下支路的对称性,以上两个错误概率相等。 于是,采用同步检测时2FSK系统的总误码率为
? r? 1 ? Pe ? erfc ? ? ? 2 ? 2?

在大信噪比条件下,上式可以近似表示为
Pe ? 1 2? r e
? r 2

72

第7章数字带通传输系统
?

包络检波法的系统性能
?

分析模型
带通 滤波器

?1

包络 检波器 定时脉冲

e2 FSK (t )

输出
抽样 判决器

带通 滤波器

?2

包络 检波器

73

第7章数字带通传输系统
?

分析计算 这时两路包络检波器的输出

上支路: V1 (t ) ? [a ? n1c (t )]2 ? n12s (t )
2 2 下支路: V2 (t ) ? n2 ( t ) ? n c 2 s (t )

由随机信号分析可知,V1(t)的抽样值V1服从广义瑞利分布,
V2(t)的抽样值V2服从瑞利分布。其一维概率密度函数分别为
f (V1 ) ?
f (V2 ) ?

? aV1 ? ?(V12 ?a 2 ) / 2? n2 ? 2 ? I e 2 0? ? ?n ? ?n ? V1
V2
2 n

? 显然,发送“1”时,若V1小于V2,则发生判决错误。

e

2 ?V22 / 2? n

74

第7章数字带通传输系统
错误概率为 P(0 / 1) ? P(V1 ? V2 ) ? ?? f (V1 ) f (V2 )dV1dV2
c

??

?

0

? ? f (V1 ) ? f (V2 )dV2 ? dV1 ? ? ? V2 ?V1 ?

??

?

0

V1 ? aV1 ? 2 2 2 ? ? I exp 2 V ? a / 2 σ dV1 0 1 n 2 2 ? ? σn ? σn ?

??

?

?



? aV1 ? ?( 2V12 ?a 2 ) / 2? n2 ? ? 2 I0 ? dV1 ??2 ? ?e 0 ? n ? n ? a 2V1 z? t? ?n 2? n
?

V1

并代入上式,经过简化可得
75

第7章数字带通传输系统
1 ?z2 2 ? ?(t 2 ? z 2 )/ 2 P?0 / 1? ? e tI 0(zt)e dt ? 0 2 根据Marcum Q函数的性质,有

Q?z, 0? ? ? tI 0 ( zt)e
0

?

?( t 2 ? z 2 ) / 2

dt ? 1

所以

1 ? z 2 / 2 1 ?r 2 P?0 / 1? ? e ? e 2 2 同理可求得发送“0”时判为“1”的错误概率,其结果与上式 完全一样,即有 1 P(1 / 0) ? P(V1 ? V2 ) ? e ?r 2 2 于是,2FSK信号包络检波时系统的总误码率为

1 ?r Pe ? e 2

2

76

第7章数字带通传输系统
?

结论 将上式与2FSK同步检波时系统的误码率公式比较可见,

在大信噪比条件下,2FSK信号包络检波时的系统性能与同步
检测时的性能相差不大,但同步检测法的设备却复杂得多。 因此,在满足信噪比要求的场合,多采用包络检波法

77

第7章数字带通传输系统
?

[例7.2.2] 采用2FSK方式在等效带宽为2400Hz的传输信道上 传输二进制数字。2FSK信号的频率分别为f1 = 980 Hz,f2 = 1580 Hz,码元速率RB = 300 B。接收端输入(即信道输出端) 的信噪比为6dB。试求: (1)2FSK信号的带宽; (2)包络检波法解调时系统的误码率; (3)同步检测法解调时系统的误码率。 【解】(1)根据式(7.1-22),该2FSK信号的带宽为
B2FSK ? f 2 ? f1 ? 2 f s ? 1580 ? 980 ? 2 ? 300 ? 1200Hz

(2)由于误码率取决于带通滤波器输出端的信噪 比。由于FSK接收系统中上、下支路带通滤波器的带宽 近似为 B ? 2 f s ? 2RB ? 600Hz
78

第7章数字带通传输系统
它仅是信道等效带宽(2400Hz)的1/4,故噪声功率也减小 了1/4,因而带通滤波器输出端的信噪比比输入信噪比提高了 4倍。又由于接收端输入信噪比为6dB,即4倍,故带通滤波 器输出端的信噪比应为 r ? 4 ? 4 ? 16

将此信噪比值代入误码率公式,可得包络检波法解调时系统 的误码率 1 1 Pe ? e ?r 2 ? e ?8 ? 1.7 ? 10 ?4 2 2 (3)同理可得同步检测法解调时系统的误码率
Pe ? 1 2? r e
? r 2

?

1 32?

e ?8 ? 3.39 ? 10 ?5
79

第7章数字带通传输系统
?

7.2.3 二进制相移键控(2PSK)和二进制差分相移 键控(2DPSK)系统的抗噪声性能
?

信号表达式
无论是2PSK信号还是2DPSK,其表达式的形式完全一 样。在一个码远的持续时间Ts内,都可表示为

发送“ 1”时 ? u1T (t ) sT (t ) ? ? ?u 0T (t ) ? ?u1T (t ) 发送“0”时 式中 ? A cos ? c t 0 ? t ? TS
u1T (t ) ? ? ? 0 其它t

当然,sT(t)代表2PSK信号时,上式中“1”及“0”是原始 数字信息(绝对码);当sT(t)代表2DPSK信号时,上式 中“1”及“0” 是绝对码变换成相对码后的“1”及“0” 。 80

第7章数字带通传输系统
?

2PSK相干解调系统性能
?

分析模型
信道 带通 滤波器 相乘器 低通 滤波器 抽样 判决器 输出

发送端

sT (t ) ni (t )
?

yi (t )

y (t )

2 cos ?ct

x (t )

Pe

定时 脉冲

分析计算 接收端带通滤波器输出波形为
发送“ 1”时 ? [a ? nc (t )] cos ? c t ? ns (t ) sin ? c t , y(t ) ? ? ?[?a ? nc (t )] cos ?c t ? ns (t ) sin ?c t, 发送“0”时

经过相干解调后,送入抽样判决器的输入波形为
? a ? nc (t ), 发送“1”符号 x (t ) ? ? ?? a ? nc (t ), 发送“0”符号

81

第7章数字带通传输系统
由于nc(t)是均值为0,方差为?n2的高斯噪声,所以x(t)的一维 概率密度函数为 ? ( x ? a) 2 ? 1 f1 ( x) ? exp ?? 发送“1"时 ? 2 2? ? n ? 2? n ?
? ( x ? a) 2 ? f 0 ( x) ? exp ?? 发送“0”时 ? 2 2? ? n ? 2? n ? 由最佳判决门限分析可知,在发送“1”符号和发送“0”符号 概率相等时,最佳判决门限b* = 0。此时,发“1”而错判为 “0”的概率为 1 0 P(0 / 1) ? P( x ? 0) ? ? f1 ( x)dx ? erfc r 1
??

2

? ?
? ?

同理,发送“0”而错判为“1”的概率为

P(1 / 0) ? P( x ? 0) ? ?

?

0

1 f 0 ( x)dx ? erfc r 2

82

第7章数字带通传输系统
故2PSK信号相干解调时系统的总误码率为 在大信噪比条件下,上式可近似为

Pe ?

1 2 ?r

e ?r

83

第7章数字带通传输系统
?

2DPSK信号相干解调系统性能
?

分析模型:相干解调法
带通 滤波器

e2 DPSK (t )

a
相乘器

c

低通 滤波器

d

e
抽样 判决器 定时 脉冲 码反 变换器

f
输出

cos ? c t b

2DPSK的相干解调法,又称极性比较-码反变换法,其模型 如上。原理是:对2DPSK信号进行相干解调,恢复出相对 码序列,再通过码反变换器变换为绝对码序列,从而恢复 出发送的二进制数字信息。因此,码反变换器输入端的误 码率可由2PSK信号采用相干解调时的误码率公式来确定。 于是,2DPSK信号采用极性比较-码反变换法的系统误码率, 只需在2PSK信号相干解调误码率公式基础上再考虑码反变 换器对误码率的影响即可。 84

第7章数字带通传输系统
其简化模型如图如下:
相对码 ?bn ? Pe
码反 变换器

绝对码 ?an ? Pe?

码反变换器对误码的影响

?bn ? ?an ?

1 0 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 0 1

(无误码时) (1个错码时) (连续2个错码时) (连续n个错码时)
85

?bn ? ?an ? ?bn ? ?an ?

1 0 1 ? 0 0 1 1 1 0 1 1 ? ? 0 1 0 0 1
1 0 1 ? ? 0 1 1 1 0 1 1 ? 1 ? 1 0 0 1

?bn ? ?an ?

1 0 1 ? ? ? ? ? ? 0 1 1 ? 1 0 1 ? 0 ?

第7章数字带通传输系统
?

误码率 设Pe为码反变换器输入端相对码序列{bn}的误码率,并 假设每个码出错概率相等且统计独立, Pe? 为码反变换器输 出端绝对码序列{an}的误码率,由以上分析可得
? Pe ? 2 P 1 ? 2P 2 ? ? ? 2P n ??

式中Pn为码反变换器输入端{bn}序列连续出现n个错码的概率, 进一步讲,它是“n个码元同时出错,而其两端都有1个码元 不错”这一事件的概率。由上图分析可得,
P 1 ? (1 ? P e )P e (1 ? P e ) ? (1 ? P e) P e
2

代入上式

P2 ? (1 ? Pe ) Pe2 (1 ? Pe ) ? (1 ? Pe ) 2 Pe2

得到

? Pe ? 2(1 ? Pe ) 2 ( Pe ? Pe2 ? ? ? Pen ? ?)
? 2(1 ? Pe ) 2 Pe (1 ? Pe ? Pe2 ? ? ? Pen ? ?)
86

…… …… …… Pn ? (1 ? Pe ) Pen (1 ? Pe ) ? (1 ? Pe ) 2 Pen

第7章数字带通传输系统
因为误码率总小于1,所以下式必成立
(1 ? Pe ? Pe2 ? ? ? Pen ? ?) ?

将上式代入式

1 1 ? Pe

Pe' ? 2(1 ? Pe ) 2 Pe (1 ? Pe ? Pe2 ? ? ? Pen ? ?)

可得

? Pe ? 2(1 ? Pe ) Pe

由上式可见,若Pe很小,则有Pe? / Pe ? 2 若Pe很大,即Pe ?1/2,则有Pe? / Pe ? 1 这意味着Pe?总是大于Pe 。也就是说,反变换器总是使误 码率增加,增加的系数在1~2之间变化。
87

第7章数字带通传输系统
将2PSK信号相干解调时系统的总误码率式

代入

1 Pe ? erfc r 2

? ?

? Pe ? 2(1 ? Pe ) Pe

可得到2DPSK信号采用相干解调加码反变换器方式时的系统 误码率为 ? 1 Pe ? 1 ? (erf r ) 2 2 当Pe << 1时,式 ? Pe ? 2(1 ? Pe ) Pe

?

?

可近似为

? Pe ? 2 Pe
88

第7章数字带通传输系统
?

2DPSK信号差分相干解调系统性能
?

分析模型
y1(t)
带通 滤波器 相乘器 低通 滤波器 抽样 判决器 输出

发送端

信道

sT (t ) ni (t )

yi (t )

延迟Ts

y2 ( t )

x (t )

Pe

定时 脉冲

89

第7章数字带通传输系统
?

分析计算:假设当前发送的是“1”,且令前一个码元也是 “1”(也可以令其为“0”),则送入相乘器的两个信号y1(t) 和y2(t)(延迟器输出)可表示为

y1 (t ) ? a cos ? c t ? n1 (t ) ? [a ? n1c (t )] cos ?c t ? n1s (t ) sin ?c t
y2 (t ) ? a cos ? c t ? n2 (t ) ? [a ? n2c (t )] cos ? c t ? n2 s (t ) sin ? c t
式中,a为信号振幅;n1(t)为叠加在前一码元上的窄带高斯噪 声, n2(t)为叠加在后一码元上的窄带高斯噪声,并且n1(t)和 n2(t)相互独立。 则低通滤波器的输出为

经抽样后的样值为

1 x(t ) ? {[a ? n1c (t )][a ? n2 c (t )] ? n1s (t )n2 s (t )} 2

1 x ? [(a ? n1c )(a ? n2 c ) ? n1s n2 s ] 2

90

第7章数字带通传输系统
然后,按下述判决规则判决: 若x > 0,则判为“1”——正确接收

若x < 0 ,则判为“0”——错误接收
这时将“1”错判为“0”的错误概率为 1 P(0 / 1) ? P{x ? 0} ? P{ [(a ? n1c )(a ? n2 c ) ? n1s n2 s ] ? 0} 2 利用恒等式
x1 x2 ? y1 y 2 ? 1 ? ( x1 ? x2 ) 2 ? ( y1 ? y 2 ) 2 ? ( x1 ? x2 ) 2 ? ( y1 ? y 2 ) 2 4

?

? ?

??

令上式中 则上误码率可以改写为

P?0 / 1? ? P [(2a ? n1c ? n2c ) 2 ? (n1s ? n2 s ) 2 ? (n1c ? n2c ) 2 ? (n1s ? n2 s ) 2 ] ? 0

?

?

91

第7章数字带通传输系统
P?0 / 1? ? P [(2a ? n1c ? n2c ) 2 ? (n1s ? n2 s ) 2 ? (n1c ? n2c ) 2 ? (n1s ? n2 s ) 2 ] ? 0 令 2 2
R1 ? (2a ? n1c ? n2 c ) ? (n1s ? n2 s )

?

?

R2 ? (n1c ? n2 c ) 2 ? (n1s ? n2 s ) 2
则上式可以化简为

P(0 / 1) ? P{R1 ? R2 }
因为n1c、n2c、n1s、n2s是相互独立的高斯随机变量,且均值 为0,方差相等为?n2。根据高斯随机变量的代数和仍为高斯

随机变量,且均值为各随机变量的均值的代数和,方差为各
随机变量方差之和的性质,则n1c+n2c是零均值,方差为2?n2 的高斯随机变量。同理, n1s+n2s 、 n1c-n2c 、 n1s-n2s都是零均 值,方差为2?n2的高斯随机变量。
92

第7章数字带通传输系统
由随机信号分析理论可知,R1的一维分布服从广义瑞利分布, R2的一维分布服从瑞利分布,其概率密度函数分别为 ? aR1 ? ?( R ?4 a ) / 4? R ?e f ( R1 ) ? 12 I 0 ? 2 ? ? 2? n ? ? n ?
2 1 2 2 n

R2 ? R22 / 4? n2 f ( R2 ) ? e 2 2? n 将以上两式代入 P(0 / 1) ? P{R1 ? R2 }
可以得到 ? ? ? P(0 / 1) ? P{R1 ? R2 } ? ? f ( R1 ) ? f ( R2 )dR2 ? dR1 ? ? 0 ? R2 ? R1 ? ? R ? aR1 ? ?( 2 R12 ? 4 a 2 ) / 4? n2 1 ?r 1 ?? I0 ? dR1 ? e ??2 ? ?e 0 2? 2 2 n ? n ?
93

第7章数字带通传输系统
同理,可以求得将“0”错判为“1”的概率,即

1 P(1 / 0) ? P(0 / 1) ? e ?r 2
因此,2DPSK信号差分相干解调系统的总误码率为

1 ?r Pe ? e 2

94

第7章数字带通传输系统
?

[例7.2.3] 假设采用2DPSK方式在微波线路上传送二进制数字 信息。已知码元速率RB = 106 B,信道中加性高斯白噪声的 单边功率谱密度n0 = 2 ? 10-10 W/Hz。 今要求误码率不大于10-4。试求

(1)采用差分相干解调时,接收机输入端所需的信号功率; (2)采用相干解调-码反变换时,接收机输入端所需的信号功 率。 【解】(1)接收端带通滤波器的带宽为 B ? 2RB ? 2 ? 10 6 Hz 其输出的噪声功率为 2 ?n ? n0 B ? 2 ?10?10 ? 2 ?106 ? 4 ?10?4 W 所以,2DPSK采用差分相干接收的误码率为 1 ?r Pe ? e ? 10 ?4 2

95

第7章数字带通传输系统
求解可得 r ? 8.52 2 2 r ? a / 2 ? 又因为 n 所以,接收机输入端所需的信号功率为

a2 2 ? 8.52 ? ? n ? 8.52 ? 4 ? 10 ?4 ? 3.4 ? 10 ?3 W 2
Pe' ? 2Pe ? 1 ? erf ( r )

(2)对于相干解调-码反变换的2DPSK系统, 根据题意有 Pe' ? 10 ?4 因而 1 ? erf ( r ) ? 10 ?4 即 erf ( r ) ? 1 ? 10 ?4 ? 0.9999 查误差函数表,可得 r ? 2.75 r ? 7.56 由r = a2 / 2?n2,可得接收机输入端所需的信号功率为 a2 2 ? 7.56 ? ? n ? 7.56 ? 4 ? 10 ?4 ? 3.02 ? 10 ?3 W 2

96

第7章数字带通传输系统
?
?

7.3 二进制数字调制系统的性能比较
误码率
相干解调 2ASK
? r? 1 ? erfc ? ? ? 2 ? 4?
? r? 1 ? erfc ? ? ? 2 ? 2?

非相干解调
1 ?r4 e 2 1 ?r 2 e 2

2FSK
2PSK

1 erfc r 2

? ?

2DPSK

erfc r

? ?

1 ?r e 2
97

第7章数字带通传输系统
?

误码率曲线

98

第7章数字带通传输系统
?

频带宽度
?

2ASK系统和2PSK(2DPSK)系统的频带宽度 2 B2 ASK ? B2 PSK ? Ts 2FSK系统的频带宽度
B2 FSK 2 ? f 2 ? f1 ? Ts

?

99

第7章数字带通传输系统
?

对信道特性变化的敏感性
?

在2FSK系统中,判决器是根据上下两个支路解调输 出样值的大小来作出判决,不需要人为地设置判决门 限,因而对信道的变化不敏感。 在2PSK系统中,判决器的最佳判决门限为零,与接 收机输入信号的幅度无关。因此,接收机总能保持工 作在最佳判决门限状态。

?

?

对于2ASK系统,判决器的最佳判决门限与接收机输 入信号的幅度有关,对信道特性变化敏感,性能最差。

100

第7章数字带通传输系统
?

7.4多进制数字调制原理
?

概述
为了提高频带利用率,最有效的办法是使一个码元传输 多个比特的信息。 ? 由7.3节中的讨论得知,各种键控体制的误码率都决定于 2 信噪比r: r ? a 2 / 2? n 它还可以改写为码元能量E和噪声单边功率谱密度n0之比: r ? E / n0 ? 设多进制码元的进制数为 M,码元能量为E,一个码元中 包含信息k比特,则有k = log2 M ? 若码元能量E平均分配给每个比特,则每比特的能量Eb等 于E / k。故有
? ?

Eb E r ? ? ? rb n0 kn0 k 在研究不同M值下的错误率时,适合用 r b为单位来比较

不同体制的性能优略。

101

第7章数字带通传输系统
?

7.4.1 多进制振幅键控(MASK)
?

概述
? ?

多进制振幅键控又称多电平调制 优点:MASK信号的带宽和2ASK信号的带宽相同,故单 位频带的信息传输速率高,即频带利用率高。

102

第7章数字带通传输系统
?

举例
?

基带信号是多进制单极性不归零脉冲
11 10 00
00 t 11 10

01
0

10

01

(a) 基带多电平单极性不归零信号
01 10 11

01

10 00

11

10 t

0

(b) MASK信号
103

第7章数字带通传输系统
?

基带信号是多进制双极性不归零脉冲 二进制抑制载波双边带信号就是2PSK信号。
01 10 11 01 00 10 00 11 10 t

0

(c) 基带多电平双极性不归零信号
01 0 10 11 01 00 10 00 11 10 t

(d) 抑制载波MASK信号
104

第7章数字带通传输系统
?

7.4.2 多进制频移键控(MFSK)
?

4FSK信号波形举例
f1 f2 f3 f4 t T (a) 4FSK信号波形

T

T

T

f1 00

f2 01

f3 10

f4 11

(b) 4FSK信号的取值

105

第7章数字带通传输系统
?

MFSK信号的带宽: B = fM - f1 + ?f 式中 f1 - 最低载频 fM - 最高载频 ?f - 单个码元的带宽

106

第7章数字带通传输系统
?

MFSK非相干解调器的原理方框图
带通滤波
f

包络检波
1

V1(t) 抽样

输入

带通滤波

? . .

? . . 带通滤波
2 f M

f

包络检波

? . .

? . .
VM(t)

判决

输出

包络检波

定时脉冲

107

第7章数字带通传输系统
?

7.4.3 多进制相移键控(MPSK)
?

基本原理
一个MPSK信号码元可以表示为 sk (t ) ? A cos(?0t ? ? k ) k ? 1,2,?, M
式中,A - 常数, ?k - 一组间隔均匀的受调制相位 它可以写为 2? ?k ? (k ? 1), k ? 1,2,? M
M

通常M取2的某次幂: M = 2k, k = 正整数

108

第7章数字带通传输系统
在下图中示出当k = 3时,?k取值的一例。图中示出当发送信号 的相位为?1 = 0时,能够正确接收的相位范围在??/8内。对于 多进制PSK信号,不能简单地采用一个相干载波进行相干解 调。例如,若用cos2?f0t作为相干载波时,因为cos?k = cos(2?-?k),使解调存在模糊。这时需要用两个正交的相干载 波解调。

图7-34 8PSK信号相位

109

第7章数字带通传输系统
可以将MPSK信号码元表示式展开写成 s k (t ) ? cos(? 0 t ? ? k )

? a k cos ? 0 t ? bk sin ? 0 t bk ? sin ? k 式中 ak ? cos ? k 上式表明,MPSK信号码元sk(t)可以看作是由正弦和余弦两个 正交分量合成的信号,并且ak2 + bk2 = 1 。因此,其带宽和 MASK信号的带宽相同。
本节下面主要以M = 4为例,对4PSK作进一步的分析。

110

第7章数字带通传输系统
?

正交相移键控(QPSK)
4PSK常称为正交相移键控(QPSK) ? 格雷(Gray)码
?

?

?

4PSK信号每个码元含有2 比特的信息,现用ab代表这两 个比特。 两个比特有4种组合,即00、01、10和11。它们和相位?k 之间的关系通常都按格雷码的规律安排,如下表所示。 QPSK信号的编码

a 0 0 1 1

b 0 1 1 0

?k
90? 0?

270? 180?

111

第7章数字带通传输系统
?

QPSK信号矢量图
00

01

10
参考相位

11 图7-35 QPSK信号的矢量图
?

格雷码的好处在于相邻相位所代表的两个比特只有一 位不同。由于因相位误差造成错判至相邻相位上的概 率最大,故这样编码使之仅造成一个比特误码的概率 112 最大。

第7章数字带通传输系统
?

多位格雷码的编码方法:
表7.4.2 格雷码编码规则 序号 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 格雷码 0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000 二进码 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
113

格雷码又称反射码。

第7章数字带通传输系统
?

码元相位关系
?

?k称为初始相位,常简称为相位,而把(?0t + ?k)称为
信号的瞬时相位。
当码元中包含整数个载波周期时,初始相位相同的相 邻码元的波形和瞬时相位才是连续的,如下图:
T T

?

(a) 波形和相位连续

114

第7章数字带通传输系统
?

若每个码元中的载波周期数不是整数,则即使初始相位相 同,波形和瞬时相位也可能不连续,如下图
T T

(b) 波形和相位不连续

或者波形连续而相位不连续,如下图
T

T

(c) 波形连续相位不连续

115

第7章数字带通传输系统
?

在码元边界,当相位不连续时,信号的频谱将展宽,包络也 将出现起伏。

?

在后面讨论各种调制体制时,还将遇到这个问题。并且有时
将码元中包含整数个载波周期的假设隐含不提,认为PSK信 号的初始相位相同,则码元边界的瞬时相位一定连续。

116

第7章数字带通传输系统
?

QPSK调制
?

两种产生方法: ? 相乘电路法
a 相乘 电路 cos?0t 相干载 波产生 ?/2 相移 -sin?0t b 相乘 电路 相加 电路 s(t)

A(t)

串 /并 变换

图7-37 第一种QPSK信号产生方法
117

第7章数字带通传输系统
码元串并变换:
0 0 1 1 2 3 4 (a) 输入基带码元 2 4 (b) 并行支路a码元 3 5 (c) 并行支路b码元 5 t

t
t

图7-38 码元串/并变换

118

第7章数字带通传输系统
矢量图:
01 a(0) 00 b(1) 11 a(1)

b(0)

10

图7-39 QPSK矢量的产生

二进制信号码元“0”和“1在相乘电路中与不归零双极性矩 形脉冲振幅的关系如下: 二进制码元“1” ? 双极性脉冲“+1”; 二进制码元“0” ? 双极性脉冲“-1”。

符合上述关系才能得到第6章中的B方式编码规则。

119

第7章数字带通传输系统
?

选择法
串/并 a b 相位 带通

变换

选择

滤波

?1 ?2 ?3 ?4
4相载波 产生器

图7-40 选择法产生QPSK信号

120

第7章数字带通传输系统
?

QPSK解调
?

原理方框图
相乘 cos?0t 低通 载波
抽判

s(t)

提取

定时 提取

a

?/2

并/串
b

A (t )

低通 抽判

sin?0t 相乘

图7-41 QPSK信号解调原理方框图
?

?

用两路正交的相干载波去解调,可以很容易地分离这 两路正交的2PSK信号。 相干解调后的两路并行码元a和b,经过并/串变换后, 121 成为串行数据输出。

第7章数字带通传输系统
?

偏置QPSK(OQPSK )
? ?

QPSK体制的缺点:它的相邻码元最大相位差达到180°, 这在频带受限的系统中会引起信号包络的很大起伏。 偏置QPSK的改进:为了减小此相位突变,将两个正交分量 的两个比特a和b在时间上错开半个码元,使之不可能同时改 变。这样安排后相邻码元相位差的最大值仅为90°(见下 表),从而减小了信号振幅的起伏。
a 0 0 1 1 b 0 1 1 0

?k
90? 0? 270? 180?

?

OQPSK和QPSK的唯一区别在于:对于QPSK,上表中的两 个比特a和b的持续时间原则上可以不同;而对于OQPSK,a 122 和b的持续时间必须相同。

第7章数字带通传输系统
?

OQPSK信号的波形与QPSK信号波形的比较
a1 a2 a3 a4 a5 a6 a7 a8

a1 a2

a3

a5

a7 a6 a8

a4

123

第7章数字带通传输系统
?

?/4相移QPSK
?

??4相移QPSK信号是由两个相差??4的QPSK星座图交替产生 的,它也是一个4进制信号:
11 01 00 10 00 01 11 45 ° 10

(a) 星座图之一

(b)星座图之二

?

?

当前码元的相位相对于前一码元的相位改变?45°或?135°。 例如,若连续输入“11 11 11 11…”,则信号码元相位为 “45? 90? 45? 90? …” 优点:这种体制中相邻码元间总有相位改变、最大相移为 ?135°,比QPSK的最大相移小。 124

第7章数字带通传输系统
?

7.4.4 多进制差分相移键控(MDPSK)
?

基本原理
?

?

?

MDPSK信号和MPSK信号类似,只需把MPSK信号用的 参考相位当作是前一码元的相位,把相移?k当作是相对 于前一码元相位的相移。 这里仍以4进制DPSK信号为例作进一步的讨论。4进制 DPSK通常记为QDPSK。 ??k QDPSK信号编码方式:
a 0 0 1 1 b 0 1 1 0 A方式 90? 0? 270? 180? B方式 135? 45? 315? 225?
125

第7章数字带通传输系统
?

产生方法
?

第一种方法
A(t)
串/并 变换 b a

c
码 变换 d

相乘 电路
-?/4

图中a和b为经过串/并变换后 的一对码元,它需要再经过 码变换器变换成相对码c和d 后才与载波相乘。 c 和d 对载波的相乘实际是 完成绝对相移键控。

载波 产生
?/4

相加 电路

s(t)

相乘 电路
图7-43 第一种QDPSK信号产生方法

126

第7章数字带通传输系统
?

码变换器:输入ab和输出cd间的16种可能关系(A方式):
前一时刻经过码变换后的 一对码元及所产生的相位 ck-1 dk-1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

当前输入的一对码元及 要求的相对相移 ak bk
0 0

当前时刻应当给出的 变换后一对码元和相位 ck dk
1.0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1

??k
90?

?k-1
90? 0? 270? 180? 90? 0? 270? 180? 90? 0? 270? 180? 90? 0? 270? 180?

?k
180? 90? 0? 270? 90? 0? 270? 180? 0? 270? 180? 90? 270? 180? 90? 0?

0 1

0?

1 1

270?

1 0

180?

127

第7章数字带通传输系统
?

码变换器的电路
ak bk ck-1 只读 ? ?
T T

存储器 dk-1

ck dk

图7-44 码变换器

?

二进制码元“0” 和“1”与相乘电路输入电压关系: 二进制码元“0” ? “+1” 二进制码元“1” ? “-1” 第二种方法:
?

第二种产生方法和QPSK信号的第二种产生方法(选择法) 原理相同,只是在串/并变换后需要增加一个 “码变换器”。
128

第7章数字带通传输系统
?

解调方法:有极性比较法和相位比较法两种。
?

极性比较法: ? 原理方框图(A方式)
相乘 电路
-?/4

低通 滤波

抽样 判决

c
定时 提取 逆码 变换

s(t)

载波 提取
?/4

a b

并/串 变换

A(t)

d
低通 滤波 抽样 判决

相乘 电路

图7-45 A方式QDPSK信号解调方法

原理和QPSK信号的一样,只是多一步逆码变换。

129

第7章数字带通传输系统
相干解调过程 设第k个接收信号码元可以表示为 sk (t ) ? cos(? 0 t ? ? k ) kT ? t ? (k ? 1)T ? 相干载波: 上支路: cos(? 0 t ? )
?

? 下支路: cos(? 0 t ? )

4

信号和载波相乘的结果: 上支路:

4

1 ? ? 1 ? ? cos(? 0 t ? ? k ) cos(? 0 t ? ) ? cos ?2? 0 t ? (? k ? )? ? cos(? k ? ) 4 2 4 ? 2 4 ? 下支路: ? 1 ? ? 1 ? ? cos(? 0 t ? ? k ) cos(? 0 t ? ) ? cos ?2? 0 t ? (? k ? )? ? cos(? k ? ) 4 2 4 ? 2 4 ? 1 ? 低通滤波后:上支路: 2 cos(? k ? 4 ) 下支路: 1 cos(? k ? ? ) 130
2 4

?

第7章数字带通传输系统
1 ? cos( ? ? ) 低通滤波后:上支路: k 2 4 1 ? cos( ? ? ) 下支路: k
2 4

判决规则 按照?k的取值不同,此电压可能为正,也可能为负,故 是双极性电压。在编码时曾经规定: 二进制码元“0” ? “+1” 二进制码元“1” ? “-1” 现在进行判决时,也把正电压判为二进制码元“0”,负 电压判为“1”,即 “+” ? 二进制码元“0” “-” ? 二进制码元“1” 因此得出判决规则如下表:
?

131

第7章数字带通传输系统
?

判决规则
判决器输出 c + - - + + + - - 0 1 1 0 d 0 0 1 1

信号码元相位?k 0? 90? 180? 270?

上支路输出

下支路输出

132

第7章数字带通传输系统
?

逆码变换器

设逆码变换器的当前输入码元为ck和dk,当前输出码元为ak

和bk,前一输入码元为ck-1和dk-1。
为了正确地进行逆码变换,这些码元之间的关系应该符 合码变换时的规则。为此,现在把码变换表中的各行按ck-1和 dk-1的组合为序重新排列,构成下表。

133

第7章数字带通传输系统
前一时刻输入的一对码元 当前时刻输入的一对码元 当前时刻应当给出的逆 变换后的一对码元

ck-1
0

dk-1
0

ck
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

dk
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

ak
0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0

bk
0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 134 0

0

1

1

1

1

0

第7章数字带通传输系统
表中的码元关系可以分为两类: (1) 当 ck ?1 ? d k ?1 ? 0 时,有 ?a k ? c k ? ck ?1
? ?bk ? d k ? d k ?1

(2)当 ck ?1 ? d k ?1 ? 1

时,有

?a k ? d k ? d k ?1 ? ?bk ? c k ? c k ?1

上两式表明,按照前一时刻码元ck-1和dk-1之间的关系不同, 逆码变换的规则也不同,并且可以从中画出逆码变换器的原 理方框图如下:

135

第7章数字带通传输系统
原理方框图

ck


ck-1
延迟T

ak ck-1 交 叉 直 通 电 路


延迟T

dk



dk-1

dk-1

bk

图7-46 逆码变换器原理方框图
136

第7章数字带通传输系统
图中将ck和ck-1以及dk和dk-1分别作模2加法运算,运算结果送 到交叉直通电路。

另一方面,将延迟一个码元后的ck-1和dk-1也作模2加法运算,
并将运算结果去控制交叉直通电路; 若ck-1?dk-1 = 0 ,则将ck?ck-1结果直接作为ak输出; 若ck-1?dk-1 = 1,则将ck?ck-1结果作为bk输出。 对于dk?dk-1的结果也作类似处理。

这样就能得到正确的并行绝对码输出ak和bk。它们经过并/串
变换后就变成为串行码输出。

137

第7章数字带通传输系统
?

相位比较法: ? 原理方框图

相乘 电路

低通 滤波

抽样 判决

-?/4
s(t) 延迟 T 定时 提取 并/串 变换 A(t)

?/4
相乘 电路 低通 滤波 抽样 判决

由此原理图可见,它和2DPSK信号相位比较法解调的原 理基本一样,只是由于现在的接收信号包含正交的两路 已调载波,故需用两个支路差分相干解调。
138

第7章数字带通传输系统
?

7.5 多进制数字调制系统的抗噪声性能
?

7.5.1 MASK系统的抗噪声性能
?

误码率:设抑制载波MASK信号的基带调制码元可以有 M个电平,如右图
+(M-1)d
+3d +d 0 -d -3d -(M-1)d 图7-48 基带信号的M个电平
139

2d t 2d

第7章数字带通传输系统
于是,此抑制载波MASK信号的表示式可以写为
?? d cos 2?f 0 t ? ?? 3d cos 2?f 0 t s (t ) ? ? ? ? ? ? ?? ( M ? 1)d cos 2?f 0 t 当发送电平 ? d时 当发送电平 ? 3d时 当发送电平 ? ( M ? 1)d时

s(t ) ? ? ? ? ? ? ?? ( M ? 1)d cos 2?f 0 t ? n(t )

若接收端的解调前信号无失真,仅附加有窄带高斯噪声,则 在忽略常数衰减因子后,解调前的接收信号可以表示为 当发送电平 ? d时 ?? d cos 2?f 0 t ? n(t ) ? 当发送电平 ? 3d时 ?? 3d cos 2?f 0 t ? n(t )
当发送电平 ? ( M ? 1)d时

式中 n(t ) ? nc (t ) cos 2?f 0 t ? ns (t ) sin 2?f 0 t
140

第7章数字带通传输系统
设接收机采用相干解调,则噪声中只有和信号同相的分量有 影响。这时,信号和噪声在相干解调器中相乘,并滤除高频 分量之后,得到解调器输出电压为
?? d ? nc (t ) ? ?? 3d ? nc (t ) v(t ) ? ? ? ? ? ? ?? ( M ? 1)d ? nc (t ) 当发送电平 ? d时 当发送电平 ? 3d时 当发送电平 ? ( M ? 1)d时

上式中已经忽略了常数因子1/2。 这个电压将被抽样判决。

141

第7章数字带通传输系统
对于抑制载波MASK信号,判决电平应该选择在0、?2d、…、 ?(M-2)d。当噪声抽样值|nc|超过d时,会发生错误判决。 但是,也有例外情况发生,这就是对于信号电平等于?(M1)d的情况。当信号电平等于+(M-1)d时,若nc > +d,不会发 生错判; 同理,当信号电平等于-(M-1)d时,若nc < - d,也不 会发生错判。 所以,当抑制载波MASK信号以等概率发送时,即每个电平 的发送概率等于1/M时,平均误码率等于
M ?2 2 1 1 ? ? P ( nc ? d ) ? ? P( nc ? d ) ? ?1 ? ? P( nc ? d ) M 2 M? ? d的概率。 式中 MP( |nc| > d) - 噪声抽样绝对值大于 Pe ?

因为nc是均值为0,方差为?n2的正态随机变量,故有
P ? nc ? d ? ? 2 2? ? n

?

?

d

e?x

2

2 / 2? n

dx

142

第7章数字带通传输系统

P ? nc ? d ? ? 2 2? ? n

?

?

d

e

2 ? x 2 / 2? n

dx

代入上式,得到

? d ? 2 1 ? 2 1 ? ? ? ? x 2 / 2? n Pe ? ?1 ? ? e dx ? ?1 ? ?erfc? ? ? 2? ? M ? 2? ? n d ? M? n ? 式中 2 ? ?z2 erfc ( x) ? ? e dz

? ? ? ?

?

x

143

第7章数字带通传输系统
?

误码率和信噪比的关系 为了找到误码率Pe和接收信噪比r 的关系,我们将上式作进一步 的推导。首先来求信号平均功率。对于等概率的抑制载波MASK 2 信号,其平均功率等于 2 M /2 M ?1 2 2 ? ? Ps ? d ( 2 i ? 1 ) / 2 ? d ? M i ?1 6 6 Ps 2 由上式得到 d ? 2 M ?1 将上式代入误码率公式,得到误码率 ? Ps ? 1 ? 3 ? Pe ? ?1 ? ?erfc? ? 2? 2 ? ? M ? 1 ? ? M? n ? ? 上式中的Ps/?n2 就是信噪比r,所以上式可以改写为
? ? 1 ? 3 ? ? Pe ? ?1 ? ?erfc? r? 2 ? M ? 1 ? M? ? ?

当M = 2时,上式变为

1 Pe ? erfc r 2

? ?

144

第7章数字带通传输系统
?

误码率曲线

Pe

r (dB)

145

第7章数字带通传输系统
?

7.5.2 MFSK系统的抗噪声性能
?

非相干解调时的误码率
?

分析模型
带通滤波 f 输入 1 包络检波 包络检波 V1(t)

带通滤波

? . .

? . . 带通滤波
f M

f 2

输出

包络检波

? . .

? . .
VM(t)

抽样 判决

定时脉冲

146

第7章数字带通传输系统
?

误码率分析计算 假设:1、当某个码元输入时,M个带通滤波器的输出中仅有 一个是信号加噪声,其他各路都只有噪声。 2 、 M路带通滤波器中的噪声是互相独立的窄带高斯 噪声,其包络服从瑞利分布。 故这(M-1)路噪声的包络都不超过某个门限电平h的概率等于
[1 ? P(h)]M ?1

其中P(h)是一路滤波器的输出噪声包络超过此门限h的概率, 由瑞利分布公式它等于
P ( h) ? ?
?

N

h

?

2 n

e

2 ? N 2 / 2? n

dN ? e

2 ? h 2 / 2? n

式中,N - 滤波器输出噪声的包络;

?n2 - 滤波器输出噪声的功率。

147

第7章数字带通传输系统
假设这(M-1)路噪声都不超过此门限电平h就不会发生错误判 决,则式
[1 ? P(h)]M ?1

的概率就是不发生错判的概率。因此,有任意一路或一路以 上噪声输出的包络超过此门限就将发生错误判决,此错判的 概率将等于
Pe (h) ? 1 ? [1 ? P(h)] ?
M ?1 n ?1 M ?1

? 1? 1? e

?

2 ? h 2 / 2? n

?

M ?1

? (?1)

n ?1

? M ? 1? ?nh2 / 2? n2 ? ? n ? ?e ? ?

显然,它和门限值h有关。下面就来讨论h值如何决定。

148

第7章数字带通传输系统
有信号码元输出的带通滤波器的输出电压包络服从广义瑞利 分布: ? 1 x ? Ax ? 2 2 ? ? exp ?? ?x ? A ??, p ( x) ? 2 I 0 ? x?0 2 ? 2 ? ? n ? ? n ? ? 2? n ? 式中,I0(?) - 第一类零阶修正贝赛尔函数; x - 输出信号和噪声之和的包络; A - 输出信号码元振幅; ?n2 - 输出噪声功率。 其他路中任何路的输出电压值超过了有信号这路的输出电压 值x就将发生错判。因此,这里的输出信号和噪声之和x就是 上面的门限值h。因此,发生错误判决的概率是

Pe ? ? p(h) Pe (h)dh
0

?

将前面两式代入上式,得到计算结果如下:

149

第7章数字带通传输系统
Pe ? e ?
M ?1 n ?1 ? A2
2 2? n

M ?1 n ?1

? (?1)

n ?1

? M ? 1? ? h ? Ah ? ?(1? n ) h 2 / 2? n2 ? ? dh ? n ? ? ?0 ? 2 I 0 ? ? ? 2 ?e ? ? n ? n?

? (?1)

n ?1

? M ? 1? 1 ? nA2 / 2( n ?1)? n2 ? ? n ? ? n ?1e ? ?

上式是一个正负项交替的多项式,在计算求和时,随着项数 增加,其值起伏振荡,但是可以证明它的第1项是它的上界, 即有 M ? 1 ? A2 / 4? n2 Pe ? e 2 上式可以改写为 M ? 1 ? E / 2? 02 M ? 1 ?r / 2 Pe ? e ? e 2 2
150

第7章数字带通传输系统
由于一个M进制码元含有k比特信息,所以每比特占有的能量 等于E/k,这表示每比特的信噪比
2 rb ? E / k? 0 ? r/k

将r = krb代入 得出

M ? 1 ? A2 / 4? n2 Pe ? e 2

M ?1 Pe ? exp( ?krb / 2) 2

在上式中若用M代替(M-1)/2,不等式右端的值将增大,但是 此不等式仍然成立,所以有 Pe ? M exp( ?krb / 2) 这是一个比较弱的上界,但是它可以用来说明下面的问题。

151

第7章数字带通传输系统
因为
M ? 2 k ? e ln 2
k

所以上式可以改写为

由上式可以看出,当k ??时,Pe按指数规律趋近于0,但要 保证 r
b

? ? rb ?? Pe ? exp ?? k ? ? ln 2 ?? ?? ? ?2
? ln 2 ? 0,

2

即 rb ? 2 ln 2

上式条件表示,只要保证比特信噪比rb大于2ln2 = 1.39=1.42 dB,则不断增大k,就能得到任意小的误码率。 对于MFSK体制而言,就是以增大占用带宽换取误码率的降 低。但是,随着k的增大,设备的复杂程度也按指数规律增 大。所以k的增大是受到实际应用条件的限制的。
152

第7章数字带通传输系统
?

码元错误率Pe和比特错误率Pb之间的关系 ? 假定当一个M进制码元发生错误时,将随机地错成其他 (M-1)个码元之一。由于M 进制信号共有M种不同的码元, 每个码元中含有k个比特,M = 2k。所以,在一个码元中 的任一给定比特的位置上,出现“1”和“0”的码元各占 一半,即出现信息“1”的码元有M/2种,出现信息“0”的 码元有M/2种。
?

码元 例:图中, 0 M=8,k=3,在任一列中均有4个“0”和 1 2 4个“1”。所以若一个码元错成另一个 3 码元时,在给定的比特位置上发生错 4 5 误的概率只有4/7。 6 7

比特 000 001 010 011 100 101 110 111

153

第7章数字带通传输系统
?

一般而言,在一个给定的码元中,任一比特位置上的信 息和其他(2k-1 – 1)种码元在同一位置上的信息相同,和其 他2k-1种码元在同一位置上的信息则不同。所以,比特错 误率Pb和码元错误率Pe之间的关系为
Pe 2 k ?1 Pb ? k Pe ? 2 ?1 2[1 ? (1 / 2 k )]

当k很大时,

Pb ? Pe / 2

154

第7章数字带通传输系统
?

误码率曲线

Pe

(a) 非相干解调

rb

155

第7章数字带通传输系统
?

相干解调时的误码率
?

计算结果给出如下:
Pe ? 1 ? 1 2?

?

?

??

e?A

2

/2

? 1 ? ? 2?

?

A? 2 r

??

e ?u

2

/2

? du ? ?

M ?1

dA

?

上式较难作数值计算,为了估计相干解调时MFSK信号的 误码率,可以采用下式给出的误码率上界公式:

Pe ? (M ? 1)erfc ( r )

156

第7章数字带通传输系统
?

误码率曲线

Pe

rb
(b) 相干解调
157

第7章数字带通传输系统
?

比较相干和非相干解调的误码率: 由曲线图可见,当k > 7时,两者的区别可以忽略。这时相干 和非相干解调误码率的上界都可以用下式表示:
M ? 1 ? A2 / 4? n2 Pe ? e 2

Pe

Pe

rb (a) 非相干解调

rb (b) 相干解调

158

第7章数字带通传输系统
?

7.5.3 MPSK系统的抗噪声性能
?

QPSK系统的性能
?

噪声容限

01

90? 11 0?

00

10

?

误码率:设f(?)为接收矢量(包括信号和噪声)相位的 概率密度,则发生错误的概率等于
Pe ? 1 ? ?
? /2
0

f (? )d?
159

下面将用简单方法计算上式。

第7章数字带通传输系统
设:信号表示式为 式中

sk (t ) ? cos(?0t ? ? k ) ? ak cos ?0t ? bk sin ?0t

ak ? cos ? k bk ? sin ? k 可知,当QPSK码元的相位?k等于45?时,
ak ? bk ? 1 / 2
故信号码元相当于是互相正交的两个2PSK码元,其幅度分别 为接收信号幅度的1/21/2倍,功率为接收信号功率的(1/2)倍。 另一方面,接收信号与噪声之和为

r (t ) ? A cos(? c t ? ? ) ? n(t )
式中 n(t ) ? nc (t ) cos ? c t ? ns (t ) sin ? c t 并且,n(t)的方差为?n2,噪声的两个正交分量的方差为
2 ? c2 ? ? s2 ? ? n
160

第7章数字带通传输系统
若把此QPSK信号当作两个2PSK信号分别在两个相干检测器 中解调时,只有和2PSK信号同相的噪声才有影响。由于误码 率决定于各个相干检测器输入的信噪比,而此处的信号功率 为接收信号功率的(1/2)倍,噪声功率为?n2。若输入信号的信 噪比为r,则每个解调器输入端的信噪比将为r/2。在7.2节中 已经给出2PSK相干解调的误码率为
Pe ? 1 erfc r 2

其中r为解调器输入端的信噪比,故现在应该用r/2代替r,即 误码率为 1 Pe ? erfc r / 2 2 所以,正确概率为

?1 ? ?1/ 2?erfc

r/2

?

161

第7章数字带通传输系统
因为只有两路正交的相干检测都正确,才能保证QPSK信号 的解调输出正确。由于两路正交相干检测都正确的概率为

?1 ? ?1/ 2?erfc r ?

2

所以QPSK信号解调错误的概率为
? 1 ? Pe ? 1 ? ?1 ? erfc r / 2 ? ? 2 ? 上式计算出的是QPSK信号的误码率。若考虑其误比特率,
2

则由于正交的两路相干解调方法和2PSK中采用的解调方法一

样。所以其误比特率的计算公式和2PSK的误码率公式一样。
?

对于任意M进制PSK信号,其误码率公式为
1 Pe ? 1 ? 2? ? r cos2 ? e 1 ? 4 ? r cos ? e ??? / M ? ?
? /M
?r

1 2?

?

2 r cos?

??

e ?x

2

/2

? dx? d? ?
162

第7章数字带通传输系统
?

当M大时,MPSK误码率公式可以近似为写为 ? ? ?
Pe ? erfc? r sin ? M? ?

?

?

OQPSK的抗噪声性能 和QPSK完全一样。 误码率曲线
Pe

rb (dB)

163

第7章数字带通传输系统
?

7.5.4 MDPSK系统的抗噪声性能
?

误码率计算近似公式为 ? ? ? Pe ? erfc? 2r sin ? 2 M ? ? 曲线
Pe

?

rb(dB)

164

第7章数字带通传输系统
?
? ? ? ? ?

7.6 小结
二进制数字调制的基本方式:2ASK、2FSK、2PSK、2DPSK。 为了克服2PSK的倒π现象,发展出了2DPSK。 B2ASK= B2DPSK=B2PSK=2fs=2RB B2FSK=|f2-f1|+2fs=|f2-f1|+2RB

?

?

二进制数字调制系统的误码率取决于解调器的输入信噪比。在 抗加性高斯白噪声方面,相干2PSK性能最好,2FSK次之, 2ASK最差。 ASK优点:设备简单,频带利用率高; 缺点:抗噪声性能差, 且对信道特性变化敏感,不易使抽样判决器工作在最佳判决门 限状态。 FSK优点:抗干扰能力较强,不受信道特性变化的影响,因此 特别适合于衰落信道;缺点:占用频带较宽,尤其是MFSK, 频带利用率较低。调频体制主要用于中、低速数据传输中。
165

第7章数字带通传输系统
?

PSK、DPSK优点:抗噪声能力强,且不受信道特性变 化的影响,因此,在高、中速数据传输中应用广泛。PSK 在相干解调时存在载波相位模糊问题,在实际中很少用于 直接传输。MDPSK应用更广泛。

166


相关文章:
通信原理(第六版)1-7章课后答案
搜试试 3 帮助 全部 DOC PPT TXT PDF XLS ...通信原理(第六版)1-7章课后答案_理学_高等教育_...《通信原理》第六版_樊昌... 11页 免费 通信原理...
通信原理答案第7章
通信原理答案第7章_工学_高等教育_教育专区。通信原理答案,樊昌信《通信原理》第七章 模拟信号的数字传输 习题 第七章 习题 ? f , f ? 200 ?1 ? 已知一低...
通信原理(第六版)1-7章课后答案_0001
通信原理(第六版)1-7章课后答案_0001_理学_高等教育_教育专区。'。5 · -...《通信原理》第六版课后... 64页 1下载券 通信原理第六版课后思考... 11...
通信原理第六版(樊昌信)第7章 数字带通传输系统
通信原理第六版(樊昌信)第7章 数字带通传输系统_信息...《通信原理》_樊昌信_曹... 165页 免费 ...通信原理课件 第7章 数字... 80页 免费喜欢...
《通信原理》第六版_樊昌信_曹丽娜答案完整版
τ , ?1 < τ < 1 2-7 已知一信号 s (t ) 的自相关函数为 Rs (τ...《通信原理》 樊昌信 曹... 88页 5下载券 《通信原理》第六版课件... 721...
《通信原理》第六版_樊昌信_曹丽娜答案
搜 试试 7 帮助 全部 DOC PPT TXT PDF XLS 百度文库 教育专区 高等教育 ...《通信原理》第六版_樊昌信_曹丽娜答案第二章 2-1 试证明图 P2-1 中周期性...
《通信原理》第六版_樊昌信_曹丽娜答案完整版_pdf
搜 试试 7 帮助 全部 DOC PPT TXT PDF XLS 百度文库 教育专区 高等教育 工...《通信原理》第六版_樊昌信_曹丽娜答案完整版_pdf_工学_高等教育_教育专区。 ...
《通信原理》第6版课后习题答案-樊昌信,曹丽娜
《通信原理》第6版课后习题答案-樊昌信,曹丽娜_信息与通信_工程科技_专业资料。主要章节及主要题目 1-7 设一数字传输系统传送二进制码元的速率为 2400B,试求该...
《通信原理》第六版_樊昌信_曹丽娜课后习题答案
《通信原理》第六版_樊昌信_曹丽娜课后习题答案_工学_高等教育_教育专区。《...第六章 数字调制系统 45 46 47 48 49 50 51 52 53 54 第七章 模拟信号...
《通信原理》第六版_樊昌信_曹丽娜作业参考答案
搜 试试 7 帮助 全部 DOC PPT TXT PDF XLS 百度文库 教育专区 高等教育 工...《通信原理》第六版_樊昌信_曹丽娜作业参考答案_工学_高等教育_教育专区。很完整...
更多相关标签:
通信原理第六版课件 | 通信原理第六版 | 通信原理第六版答案 | 通信原理樊昌信第六版 | 通信原理第六版 pdf | 通信原理第六版思考题 | 通信原理第六版视频 | 通信原理第六版精编本 |