当前位置:首页 >> 数学 >>

2015年高中数学 2.4.1线性回归方程学案1 苏教版必修3


线性回归方程 第 25 课时
【学习导航】

学习要求
1.理解线性回归的基本思想和方法,体会 变量之间的相关关系。线性回归方程的 求法。 2.会画出一组数据的散点图,并会通过散 点图判断出这组数据是否具有线性关 系。 【课堂互动】

当 a,b 使 Q ? ( y1 ? bx1 ? a) 2 ?

( y2 ? bx2 ? a) 2 ? ? ? ( yn ? bxn ? a) 2
? ? bx ? a 为拟合这 n 对数 取得最小值时, 就称 y
据 的 线 性 回 归 方 程 (linear regression equation), 将该方程所表示的直线称为回归直 线。 6.用书上的方法 3,可求得线性回归方程

自学评价
在实际问题中,变量之间的常见关系有两 类:一类是确定性函数关系,变量之间的关 系可以用函数表示,另一类是相关关系,变 量之间有一定的联系,但不能完全用函数来 表达 2.建立平面直角坐标系,将数据构成的数对 所表示的点在坐标系内标出,这样的图称为 散点图(scatter diagram) 3.在散点图中如果点散布在一条直线的附 近, 可用线性函数近似地表示 x 和 y 之间的 关系。选择怎样的直线我们有下列思考方 案: (1)选择能反映直线变化的两个点 (2)取一条直线,使得位于该直线一侧和另 一侧点的个数基本相同 (3)多取几组点,确定几条直线方程,再分 别 算出各条直线斜率、截距的平均值,作 为所求直线的斜率、截距

? ? bx ? a 中的系数: y

b?

n? xi yi ? (? xi )(? yi )
i ?1 i ?1

n

n

n

n? xi2 ?(? xi )
i ?1 i ?1

n

n

i ?1 2

a = y ? bx

(*)

7.用回归直线进行拟合的一般步骤为: (1)作出散点图,判断散点是否在一条直线附近 (2)如果散点在一条直线附近,用上面的公式求 出 a,b,并写出线性回归方程 【精典范例】 例 1 下表为某地近几年机动车辆数与交通事故 数的统计资料, 请判断机动车辆数与交通事故数 之间是否具有线性相关关系, 如果具有线性相关 关系, 求出线性回归方程; 如果不具有线性相关 关系,说明理由。 机动车辆 数 x/千台 交通事故 数 y/千件 95 6.2 110 7.5 112 7.7 120 8.5 129 8.7 135 9.8 150 10.2 180 13

? ? bx ? a 的直线拟合散点图 4 .用方程为 y
中的点,应使得该直线与散点图中的点最接 近。用最小二乘法来求 a 、 b 的原理和方法 见教科书 P72

? ? bx ? a 近似表示的相 5. 能用直线方程 y
关 关 系 叫 做 线 性 相 关 关 系 (linear correlation) 6.设有(x,y)的 n 对观察数据如下:

【解】 在直角坐标系中描出数据的散点图, 直观判断散 点在一直线附近, 故具有线性相关关系, 计算相 应的数据之和:

x
y

x1
y1

x2
y2

x3 y3

… …

xn
yn

?x
i ?1

8

i

? 1031,

?y
i ?1

8

i

? 71.6

1

?x
i ?1

8

2 i

? 137835

?x y
i ?1 i

8

追踪训练
i

? 9611 .7

将它们代入(*)式计算得 b ? 0.0774 , a ? ?1.0241 , 所以,所求线性回归方程为

? ? 0.0774x ? 1.0241 y
例 2 一个车间为了规定工时定额, 需要确定 加工零件所花费的时间 ,为此进行了 10 次 试验,测得数据如下: 零 件 x(个) 数 10 62 60 95 20 68 70 102 30 75 80 108 40 81 90 115 50 89 100 122

1、下列两个变量之间的关系哪个不是函数关系 ( D ) A.角度和它的余弦值 B.正方形边长和面积 C.正n边形的边数和它的内角和 D.人的年龄和身高 2、下面是我国居民生活污水排放量的一组数据
王新敞
奎屯 新疆

(单位: 10 t),试分别估计 1996 年和 2004 年 我国居民生活污水排放量。 年 份 1995 1996 1997 1998 排放量 年 份 151 1999 2000 189.1 2001 194.8 2002

8

加 工 时 间 y(分) 零 件 x(个) 数

加 工 时 间 y(分)

排放量 203.8 220.9 227.7 232.3 解:通过散点图(如下图,EXCEL 制作)可以发现 年份与污水排放量之间具有线性相关关系, 用公 式可求得线性回归方程为: ? =11.447 x-22678 y 8 所以,当 x=1996 时,y=170.2(10 t); 8 当 x=2004 时,y=261.8(10 t).

(1)画出散点图; (2)如果散点图中的各点大致分布在一条直 线的附近,求 y 与 x 之间的线性回归方程。 【解】 (1)
加工时间y(分) 150 100 50 0 0 50 100 150 加工时间 y(分)

(2)由表中数据 ,可以求得:

x ? 55 , y ? 91.7 , ? xi2 ? 38500
i ?1

10

?y
i ?1

10

2 i

? 87777, ? xi yi ? 55950
i ?1

10

将它们代入(*)式计算得

b ? 0.668 , a ? 54.96
因此所求的回归直线方程是

? ? 0.668x ? 54.96 y
2


相关文章:
...高二年级必修3学案:第25课时6.4.1线性回归方程(1)已...
苏教版数学高二年级必修3学案:第25课时6.4.1线性回归方程(1)已对_数学_高中教育_教育专区。线性回归方程 第 25 课时 【学习导航】 学习要求 1.理解线性回归的...
...高二年级必修3学案:第26课时6.4.2线性回归方程(2)已...
苏教版数学高二年级必修3学案:第26课时6.4.2线性回归方程(2)已对_数学_高中教育_教育专区。线性回归方程 第 26 课时 【学习导航】 学习要求 1.进一步了解非确定...
苏教版高中数学必修1学案(全套)
苏教版高中数学必修1学案(全套)_数学_高中教育_教育专区。由莲山课件提供 http...上到原点的距离等于 2 的点的全体; (3)所有正三角形的全体; (4)方程 x ...
2015年高中数学 2.4.3复习课2学案 苏教版必修3
2015年高中数学 2.4.3复习课2学案 苏教版必修3_数学_高中教育_教育专区。第 ...1 3 ) 2 5 3 7 则 y 与 x 的线性回归方程 y ? bx ? a 必过 (B...
2015年高中数学 2.1.1简单随机抽样学案 苏教版必修3
2015年高中数学 2.1.1简单随机抽样学案 苏教版必修3_数学_高中教育_教育专区...怎样抽取的样本更能充分简单随机抽样 简单随机抽样 相关关系 方法 线性回归方程 ...
【必修三学案】16.线性回归方程
【必修三学案】16.线性回归方程_数学_高中教育_教育专区。高中数学人教A版必修三学案 2.3.2 线性回归方程 教学目标: 1.在两个变量具有线性相关关系时,会在数...
苏教版必修3高一数学6.4.3线性回归方程复习练习
苏教版必修3高一数学6.4.3线性回归方程复习练习_数学_高中教育_教育专区。第 12 课时复习课 2 分层训练 1.三点(3,10),(7,20) ,(11,24)的线性回归方程是...
2011年高二数学测试:2.4《线性回归方程》(苏教版必修3))
2011年高二数学测试:2.4线性回归方程》(苏教版必修3))_高中教育_教育专区。...x ? 1 答案:A 4.为了考查两个变量 x 和 y 之间的线性关系,甲、乙两位...
...2015-2016学年高中数学 2 章末整合 苏教版必修3
【金版学案2015-2016学年高中数学 2 章末整合 苏教版必修3_数学_高中教育...的回归直线方程. 分析: 两个随机变量是否具有线性相关关系有两种方法判断: 是...
2015-2016学年高中数学 3.1.1线性回归方程学案
【金版学案】2015-2016 学年高中数学 3.1.1 线性回归方程学案 新人教 A 版选修 2-3 1 2 基础巩固 1.炼钢时钢水的含碳量与冶炼时间有(B) A.确定性关系...
更多相关标签: