当前位置:首页 >> 建筑/土木 >>

第3章(3.2.6)APM(或APK)信号最佳解调性能分析


《数字通信》辅导材料

第3章

加性高斯噪声中数字信号传输

79

3.2.6 APM(或 APK)信号最佳解调(组合多幅多相调制信号)
讨论:1.为什么要采用 APM?
2.APM 星座对 Pav 和 PM 的影响 3.QAM 系统 4.QAM 最佳解调性能分析 5.QAM

系统的带宽效率 6.QAM 系统与 MPSK 系统的比较

一、为什么要采用 APM?
1. MPSK 和 MPAM 存在的问题 优点:带宽效率(
R R )高。 ? log 2 M W W

缺点:在要求 PM 一定条件下,符号 SNR ? ? M 2 .(注)。当 M 增加时, 带宽效率增加。又

10log M 2 = 10log2 2k =6k (dB)
因此,当 M 增加一倍(即 k 增加 1bit)时,要求 ? 增加 6dB,才能保持 PM 不变。
R ,要求付出 SNR 比较大的代价。故该方案属于牺牲功率效率换取带 W 宽效率的方案。

即提高

注:比较

MPSK 系统
当 M>>1 时

MPAM 系统
当 M>>1 时

PM ? erfc ( ?

?
M

)

PM ?

M 3 erfc( ? av ) 2 M ?1 M ?1 3 ? av ) M2

? e r f( c

?
M
2

?)

? erfc(

即当 M↑,若要保持 PM 不变,则要求

?
2

M 原因: MPSK 和 MPAM 信号的 Constellation 不是最佳的。它们的星座上信 号的分布被限制在一个圆上或直线上,自由度是曲线和直线,不是正宗的二 维分布星座图。

? const . , ? ? M 2 。

能否做到 ? ? M ?

《数字通信》辅导材料

第3章

加性高斯噪声中数字信号传输

80

2013-03-29 讲至此处, 已经讲了 6 次。 清明过后 4 月 7 日从 此开始讲。
2.信号星座图及其最佳化 1) 信号星座图 在二维信号空间(平面)中 两相邻信号点之间距离(最小欧氏距离 Minimum Euclidean Distance)— —>决定 PM ; 所有信号点对原点的平均距离(的平方)-→决定 ? (或 Pav )

S1 r1 r2 d S2 PM

?
2)最佳星座图:功率效率最高!

Pav

2 “最佳化”含义: PM 一定时( dmin 一定) 要求 ? ( Pav 信号平均功率)最小 ,
2 d min 最大) Power Efficiency Eb

(或功率效率→ PE=

“最佳星座图”的几何解释(信号空间) : 在二维信号空间中,在相邻两信号点之间距离不变条件下,所有信号点对 原点的平均距离为最小。 或:在有限的信号空间范围一定条件下,使相邻信号点距离最大。 3)获得最佳信号星座图的途径 充分合理地利用二维信号空间――星座图设计最佳化。

《数字通信》辅导材料

第3章

加性高斯噪声中数字信号传输

81

4)MPSK 和 MPAM 信号星座图不是最佳的的原因 没有充分合理利用二维信号空间:MPSK――局限在以 A 为半径的圆周 上,而 MPAM――只是一维的。

3.APM 信号设计考虑的因素 1)尽可能使星座图最佳化――尽可能充分合理利用二维空间, 使星座尽可能 合理,接近最佳化。使得当 M↑时, ? ( Pav )不增加或少增加。 2)实际因素――在实际系统中,还应考虑某些实际的因素,如 抗载波相位抖动性能好,电路实现方便等要求。

4.二维星座的分类
1)MPSK――在一个半径为 A 的圆周上 2)QAM――在矩形格栅上,可以接近最佳化。
3) APM――一般化,组合幅,相调制,可以实现最佳化

MPSK

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

QAM

APM

《数字通信》辅导材料

第3章

加性高斯噪声中数字信号传输

82

例: 16 点星座图(R=9600bit/s)
QAM ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? V.29

最佳

最佳 ――性能最佳;但实现复杂,不实用。 QAM――性能比最佳差 0.5dB,实现容易,常用。 V.29 ――性能差一些,但抗载波相位偏移性能好,实现也比较方便。CCITT 建 议。
10?5
V.29(CCITT)

10?6
10?7
最佳 QAM 0.5dB

10?8 10?9
20 21 22 23

SNR(dB)

《数字通信》辅导材料

第3章

加性高斯噪声中数字信号传输

83

二、APM 的星座图对 Pav 和 PM 的影响
1. APM 的一般表达式

sm (t )=Cm cos 2? f ct+?m), (

m=,..., M 1 2,

=Am cos 2? fct -Bm sin 2? fct, 0 ? t ? T
式中,

?Am ,Bm} 为一组正交离散幅度对,确定信号点在二维信号平面上位置。
? A =d A 令? m m ? Bm=em A

A--固定幅度值(度量单位,或称比例因子) ?dm,em? ――信号点的坐标。 , 2. Pav 和 PM 与星座的关系。

m (d m , em ) D(m,m-1)

(m-1)

(d m-1 , em ?1 )

? 1 设 M 元 APM 信号是等概的 ? ?M

A2 ? ,则 Pav ? ? M ?

? (d
m ?1

M

2 m

2 ? em )

PM ――决定于相邻两信号之间距离:最小欧氏距离。
D(m, m -1) ? (d m - d m-1 ) 2 ? (em - em?1 ) 2 (Minimum Euclidean Distance)

《数字通信》辅导材料

第3章

加性高斯噪声中数字信号传输

84

3.举例. 1) PM 相同, Pav 相同,而星座不同。 例:两个不同的 4 点星座(图 5-2-14,4PSK,4APM) ,如下图。 则有 P ? ( 2 A)2 ? 2 A2 av
2A

,D=2A(最小欧式距离) 。

d=2A

(a)

A2

d = A12 ? A22 = 2 A A1

A1

A1 ? A A2 ? 3 A
(b) 4APM

2) PM 相同, Pav 不同 例:五种不同的 8 点星座(图 5-2-15(a)-(d) 8APM, (e)8PSK )

《数字通信》辅导材料

第3章

加性高斯噪声中数字信号传输

85

图 5-2-15

(a)(c) (b) (d) (e)

Pav =6 A2 Pav =6.83 A2 Pav =4.73 A2 Pav =6.81 A2
(e) 2.61 2

以上均有 D=2,其中(d)的功率效率 PE 最大

《数字通信》辅导材料

第3章

加性高斯噪声中数字信号传输

86

三.QAM 系统
1. QAM 信号的产生

?anr ? ?an ?
Graycoding

?Inr ?
D/A
g(t)

串/并

Sm(t ) ? Re[u (t )e j 2? fct ] cos 2? f c t

?ani?

Graycoding

D/A

g(t)

?Ini?

? sin 2? f ct

An ? anr ? jani

? j 2? f c t ] ? sm (t ) ? Re[u (t )e ? ?u (t ) ? ? I n g (t ? nT ) n ? ? I n ? I nr ? jI ni ?

等效基带模型

?a n ?

串/并

?A n ?

mapping
Graycoding

?I n ?
D/A
g(t)

u(t)

2.QAM 信号的最佳解调器 由两个载波相位相互正交的 MPAM 最佳解调器组成。

?I? ?
nr

u(T-t)

幅度判决

A/D

解码

? ?anr ?

R(t)

cos 2? f ct

逆映射
u(T-t)
幅度判决 A/D

并/串

? ?an ?

解码

sin 2? f ct

?I? ?
ni

? ?ani ?

《数字通信》辅导材料

第3章

加性高斯噪声中数字信号传输

87

等效基带模型
r(t) Ur Ui
逆映射

?I? ?
n
幅度判决 A/D

? ?anr ?
解码
并/串

u * (T-t)

? ?an ?

? ?ani ? ? ? ? An ? ani ? janr

四.QAM 信号最佳解调性能分析
设:M 元 QAM 信号 复符号
M ? 2k ,且 k 为偶数。

?In ? 在(0,T)内含 k bit—— 2k ? M 元。

k ?k? 两个正交分量 ?I nr , I ni ? 在(0,T)内各有 ? ? bit —— 2 2 ? M 元。 ?2?

? ?an ?

... ?
1 2

I nr M 元 PAM I ni M 元 PAM

k

?I n ?
M元

...

k 比特 两个正交支路均为 M 元 PAM 信号。 最佳解调器两个支路分别对两个 M 元 PAM 信号解调。 则利用上节课结果(PAM 性能分析的结果) ,有
P M ? (1 ?
1 M

)erfc(

3 1 M ?1 2

? av ) ? 2(1 ?

1 M

)Q(

3 M ?1

? av ) (5-2-78)

两路合成总的平均正确判决概率为

Pc ? (1 ? P M )2
总平均符号错误判决概率为

PM ? 1 ? Pc ? 1 ? (1 ? P M )2

《数字通信》辅导材料

第3章

加性高斯噪声中数字信号传输

88

分两种情况: 1 ○k 为偶数
PM ? 2(1 ?
1 M

)erfc(

3 2( M ?1)

k? b )[1 ? 1 (1 ? 2

1 M

)erfc(

3 2( M ?1)

k? b )]

2 ○k 为奇数 此时不能分解为两个对称的正交支路,由 P M → PM ,但可求出

PM 的上限: P M ? 2erfc(

P M ? 4Q (

3 k? b 2( M ?1)

)

3 k? b M ?1

)

此式对任意 k 都适用。

可见

? ?M

QAM 优于 MPSK 和 MPAM。

五.QAM 系统的带宽效率
根据奈氏准则(2 Baud/Hz) 1 W ? 2T


R kT ? ? 2k ? 2 log2 M W 1 2T
R ) W

六.QAM 系统与 MPSK 系统的比较( PM ,
1. 可靠性( PM )
? MPSK: PM ( PSK ) ? erfc( k? bp sin M )

? bp ?? 1

QAM: 取

PM (QAM ) ? 2erfc( PM (QAM ) ? erfc(

3 2( M ?1)

k? bQ )

3 2( M ?1)

k? bQ )

(误差< 1dB)

1 比较:在相同 PM ,M(或 k) ,波特率 T (或比特率)条件下,比较 ? bp 和 ? bQ

令 P ( psk ) ? P (QAM ) M M

《数字通信》辅导材料

第3章

加性高斯噪声中数字信号传输

89

即 k? bp sin
?

2 ? M

?

3 2( M ?1)

k? bQ

bp 3 ? RM ? ? bQ ? 2( M ?1)sin 2 ?

当M ??1

M

3M 2 2( M ?1)? 2

(dB)

(5—2—82)

表示 QAM 相对 MPSK 性能的改善量,可见 M 越大改善量越是明显! 上式也适用于 M=4 情况。当 M=4 时, RM =1。 (虽由近似公式导出) 即 4PSK 与 4QAM 具有相同的性能,也可以由准确公式导出这一结果: 当 M=4 时 4PSK: Pb (4 psk ) ? 1 ? (1 ? Pb ( psk ) ) 2 ? 1 ? [1 ? 1 erfc ? bp ]2 2 4QAM: Pb (4QAM ) ? 1 ? (1 ? P M ) 2 ? 1 ? [1 ? 1 erfc ? bQ ]2 2 当

P ( 4 p s k)? P b

b 4 QAM ( )

时, ? bQ ? ? bp ,即 RM =1

表 5-2-1 MQAM 相对 MPSK 的 SNR 改善量

M
8 16 32 64

10log10 RM (dB)
1.65 4.20 7.02 9.95

当 M >4 时, RM >1,MQAM 优于 MPSK,将 Fig 5-2-10 与 Fig 5-2-16 比较
PM

16QAM 4QAM 4PSK

16PSK

4dB

?b

结论:在传送相同比特率 R 条件下(或 M,k 相同) 当 M < 8 时(中速) ,QAM 与 MPSK 性能相近。

《数字通信》辅导材料

第3章

加性高斯噪声中数字信号传输

90

当 M > 8 时(高速) ,QAM 性能优于 MPSK,故 QAM 适用于高速数传。
R 2.有效性 ( W )

R ? log 2 M W R ? 2 log 2 M QAM: W

MPSK:

低 高

3.系统复杂性 MPSK 相对 QAM 简单一些。 ------- 应用:中速 Modem, R≤4800 bit/s QAM 由两路 PAM 实现,也不算很复杂 –--应用:高速 Modem, R > 4800 bit/s
R 小结:关于带宽 W 计算及( W )比较

1. 带宽计算 1)等效基带带宽 2)线性调制——幅度调制(PAM、QAM) ,时间正交等,根据奈氏准则 W 为奈氏带宽 2Bd /Hz 3) 非线性调制——如下 FSK、PSK.
R 2. ( W ) 比较:
R ? MPAM, QAM W ? 2 log 2 M ? log 2 M ? MPSK(8 PSK) ? 2log 2 M R W = M ?正交信号(FSK ) ?双正交信号(4 PSK ) R = 4log 2 M W M ?

根据频谱 G ( f ) 第一个零交点(近似)

高 中

高速数传 中速数传

? ? ? 低( < 1)低速数据 ? ?

2011-03-28 讲至此处生病中


相关文章:
第3章(3.2.6)APM(或APK)信号最佳解调性能分析
《数字通信》辅导材料 第3章 加性高斯噪声中数字信号传输 79 3.2.6 APM(或 APK)信号最佳解调(组合多幅多相调制信号)讨论:1.为什么要采用 APM? 2.APM 星座...
南邮 数字通信试题
噪声中确知信号的最佳接收 P80 第三章 加性高斯...3.2.2 M 元正交信号最佳解调 ?性能分析 — PM ...APM(或 APK)信号最佳解调(组合多幅多相调制信号)P...
AM两种解调方式下的性能分析
3.2.3 MATLAB 系列工具优势(1)友好的工作平台和...解调器抗噪声性能分析模型 模型输入端的 AM 信号用...4.2 包络检波包络检波器通常由半波或全波整流器和...
信号与系统第3章习题
信号与系统第 3 章习题一、选择题 1、已知 x(?...x2 (k ) 等于( ) A.{6, 11(k=0), 0, ...7、连续时间系统和离散时间系统的时域分析有何异同?...
通信原理 第3章 习题解答
通信原理》习题三(6.7章) 47页 免费 第9章通信...请到百度文库投诉中心;如要提出功能问题或意见建议,...结论:DSB 解调信号已严重失真,故对 DSB 信号不能...
《信号与系统分析基础》第3章习题解答
6页 免费 《信号与系统分析基础》... 暂无评价 13页 免费 第3章信号系统分析...第三章习题解答 3.2 求下列方波形的傅里叶变换。 (a) 解: f1(t) F1 (...
线性调频信号仿真和性能分析
线性调频信号仿真和性能分析_信息与通信_工程科技_专业...0.2 0.3 0.4 0.5 0.6 t(单位:秒 ) 0....(t)的频谱'); % === 正交解调 === n=0:N...
第3章习题
3 D. 2 11)在计算机进行数据传输时,吧数字信号通过调制器变换成模拟信号传送,在接收端再用 解调器还原成原来的数字信号的传输方式成为( )。 A. 基带传输 B....
《高频电子技术》(第二版)部分习题解答
环形相乘器构成混频电路与构成振幅调制和解调电路有何...2-16 在图 2-23 所示电路中,信号源频率 f 0 ...7.3 ? 103 ≈18.35 第3章 3-1 反馈式振荡器...
通信原理(陈启兴版)第6章课后习题答案
通信原理(陈启兴版)第6章课后习题答案_工学_高等教育...二进制调制系统的抗噪声性能及其性能比较;最佳 判决门...( b) 相干解调方式 图 6-3 2ASK信号的接收系统...
更多相关标签:
bpsk解调的性能计算 | apm应用性能管理 | apm应用性能监控 | apm性能监控 | apm82181 性能 | apm性能指标 | 途牛apk压缩最佳实践 | win7最佳性能设置 |