当前位置:首页 >> 高中教育 >>

2015《创新大课堂》高三人教版数学(理)一轮复习课时作业:第9章 第3节 变量间的相关关系统计案例]


课时作业
一、选择题 1.已知某车间加工零件的个数 x 与所花费时间 y(h)之间的线性回归方程为^ y= 0.01x+0.5,则加工 600 个零件大约需要的时间为 ( A.6.5 h C.3.5 h B.5.5 h D.0.3 h )

A [将 600 代入线性回归方程^ y=0.01x+0.5 中得需要的时间为 6.5 h.] 2.(2014

· 衡阳联考)已知 x 与 y 之间的一组数据: x 0 1 2 3

y

m

3

5.5

7

已求得关于 y 与 x 的线性回归方程^ y=2.1x+0.85,则 m 的值为( A.1 C.0.7 B.0.85 D.0.5

)

D [回归直线必过样本中心点(1.5, y ), 故 y =4,m+3+5.5+7=16,得 m=0.5.] 3.已知 x、y 的取值如下表: x 0 1 3 4

y

2.2

4.3

4.8

6.7

^,则a ^=( 从所得的散点图分析,y 与 x 线性相关,且^ y=0.95x+a A.2.5 C.2.7 B.2.6 D.2.8

)

B [因为回归方程必过样本点的中心( x ,y ), 又 x =2,y =4.5, 则将(2,4.5) ^可得a ^=2.6.] 代入^ y=0.95x+a 4.(2014· 合肥检测)由数据(x1,y1),(x2,y2),?,(x10,y10)求得线性回归方程^ y ^x+a ^ , 则 “(x , y ) 满 足 线 性 回 归 方 程 ^ ^x+a ^ ” 是 “x = =b y=b 0 0 0 x1+x2+?+x10 y1+y2+?+y10 , y ”的 0= 10 10 ( A.充分不必要条件 C.充要条件 B.必要不充分条件 D.既不充分也不必要条件 )

^x+a ^必过样本中 B [x0,y0 为这 10 组数据的平均值,又因为回归直线^ y=b 心点( x , y ),因此(x0,y0)一定满足线性回归方程,但坐标满足线性回归 方程的点不一定是( x , y ).] 二、填空题 5.考古学家通过始祖鸟化石标本发现:其股骨长度 x(cm)与肱骨长度 y(cm)的 线性回归方程为^ y=1.197x-3.660,由此估计,当股骨长度为 50 cm 时,肱 骨长度的估计值为________ cm. 解析 根据回归方程^ y=1.197x-3.660,将 x=50 代入,得 y=56.19,则肱

骨长度的估计值为 56.19 cm. 答案 56.19

6.(2014· 广东梅州一模)在 2012 年 8 月 15 日那天,某市物价部门对本市的 5 家商场的某商品的一天销售量及其价格进行调查, 5 家商场的售价 x 元和销 售量 y 件之间的一组数据如下表所示: 价格 x 销售量 y 9 11 9.5 n m 8 10.5 6 11 5

由散点图可知,销售量 y 与价格 x 之间有较强的线性相关关系,其线性回


归直线方程是: y=-3.2x+40,且 m+n=20,则其中的 n=________. 解析 1 m x =5(9+9.5+m+10.5+11)=8+ 5 ,

1 y =5(11+n+8+6+5) n =6+5,线性回归直线一定经过样本中心( x , y ), m? n ? 即 6+5=-3×2?8+ 5 ?+40,即 3.2m+n=42.① ? ? 又 m+n=20,② 答案 10 联立①②解得 m=10,n=10.

三、解答题 7.已知 x,y 的一组数据如下表: x y 1 1 3 2 6 3 7 4 8 5

(1)从 x,y 中各取一个数,求 x+y≥10 的概率; 1 1 (2)对于表中数据,甲、乙两同学给出的拟合直线分别为 y=3x+1 与 y=2x 1 +2, 试利用“最小平方法(也称最小二乘法)”判断哪条直线拟合程度更好. 解析 (1)从 x, y 中各取一个数组成数对(x, y), 共有 25 对, 其中满足 x+y≥10

的有(6,4),(6,5),(7,3),(7,4),(7,5),(8,2),(8,3),(8,4),(8,5),共 9 对.故 9 所求概率 P=25. 1 (2)用 y=3x+1 作为拟合直线时,所得 y 值与 y 的实际值的差的平方和为 S1 ?4 ? ?10 ? ?11 ? 7 =?3-1?2+(2-2)2+(3-3)2+? 3 -4?2+? 3 -5?2=3. ? ? ? ? ? ? 1 1 用 y=2x+2作为拟合直线时, ?7 ? 所得 y 值与 y 的实际值的差的平方和为 S2=(1-1)2+(2-2)2+?2-3?2+(4 ? ? ?9 ? 1 -4)2+?2-5?2=2. ? ? 1 1 ∵S2<S1,∴直线 y=2x+2的拟合程度更好. 8. 某电脑公司有 6 名产品推销员, 其工作年限与年推销金额的数据如下表:

推销员编号 工作年限 x/年 推销金额 y/万元

1 3 2

2 5 3

3 6 3

4 7 4

5 9 5

(1)以工作年限为自变量 x,推销金额为因变量 y,作出散点图; (2)求年推销金额 y 关于工作年限 x 的线性回归方程; (3)若第 6 名推销员的工作年限为 11 年,试估计他的年推销金额.

解析

(1)依题意,画出散点图如图所示,

(2)从散点图可以看出,这些点大致在一条直线附近, ^x+a ^. 设所求的线性回归方程为^ y=b y? ? ?xi- x ??yi--
5

^= 则b

x=1

x=1

? ?xi- x ?2

5

10 ^= y -b ^- =20=0.5,a x =0.4,

∴年推销金额 y 关于工作年限 x 的线性回归方程为^ y=0.5x+0.4. (3)由(2)可知,当 x=11 时, ^ y=0.5x+0.4=0.5×11+0.4=5.9(万元). ∴可以估计第 6 名推销员的年推销金额为 5.9 万元.


相关文章:
...一轮复习课时作业:第5章 第3节 等比数列及其前n项和...
2015《创新大课堂》高三人教版数学(理)一轮复习课时作业:第5章 第3节 等比数列及其前n项和]_高中教育_教育专区。2015《创新大课堂》高三人教版数学(理)一轮复...
...轮复习课时作业:第10章 第3节 二项式定理]
2015《创新大课堂》高三人教版数学(理)一轮复习课时作业:第10章 第3节 二项式定理]_高中教育_教育专区。2015《创新大课堂》高三人教版数学(理)一轮复习课时作业...
...)一轮复习课时作业:第8章 第3节 圆的方程]
2015《创新大课堂》高三人教版数学(理)一轮复习课时作业:第8章 第3节 圆的方程]_高中教育_教育专区。2015《创新大课堂》高三人教版数学(理)一轮复习课时作业:...
...一轮复习课时作业:第8章 第3节 圆的方程
2015《创新大课堂》高三人教版数学(理)一轮复习课时作业:第8章 第3节 圆的方程_高中教育_教育专区。2015《创新大课堂》高三人教版数学(理)一轮复习课时作业:第...
2015《创新大课堂》高三人教版数学(理)一轮复习课时作...
2015《创新大课堂》高三人教版数学(理)一轮复习课时作业:第9章 第2节 用样本估计总体]_高中教育_教育专区。2015《创新大课堂》高三人教版数学(理)一轮复习课时...
...)一轮复习课时作业:第9章 第1节 随机抽样]
2015《创新大课堂》高三人教版数学(理)一轮复习课时作业:第9章 第1节 随机抽样]_高中教育_教育专区。2015《创新大课堂》高三人教版数学(理)一轮复习课时作业:第...
...课时作业:第2章 第3节 函数的单调性与最值
2015《创新大课堂》高三人教版数学(理)一轮复习课时作业:第2章 第3节 函数的单调性与最值_高三数学_数学_高中教育_教育专区。课时作业一、选择题 1.(2013· ...
...课时作业:第3章 第3节 三角函数图象与性质
2015《创新大课堂》高三人教版数学(理)一轮复习课时作业:第3章 第3节 三角函数图象与性质_高中教育_教育专区。2015《创新大课堂》高三人教版数学(理)一轮复习课...
2015《创新大课堂》高三人教版数学(理)一轮复习课时作...
2015《创新大课堂》高三人教版数学(理)一轮复习课时作业:第9章 第4节 算法初步]_高中教育_教育专区。2015《创新大课堂》高三人教版数学(理)一轮复习课时作业:第...
...第3节 平面向量的数量积与平面向量应用举例
2015《创新大课堂》高三人教版数学(理)一轮复习课时作业:第4章 第3节 平面向量的数量积与平面向量应用举例_高中教育_教育专区。2015《创新大课堂》高三人教版数学...
更多相关标签: