当前位置:首页 >> 学科竞赛 >>

2007年浙江省温州市摇篮杯高一数学竞赛试题


2007 年浙江省温州市摇篮杯高一数学竞赛试题 (2007 年 4 月 15 日)
1、已知集合 A ? ?x | x ? 1, x ? R? , A ( ) B、 ?x | x ? ?1, x ? R? D、 ?0,1?
B ? R ,则集合 B 不可能 是 ...

A、 ?x | x ? ?1, x ? R? C、 ?x | x ?

?1, x ? R? 2、已知 sin 36 ? ? a ,则 sin108? 等于 ( A、 3a ) B、 3a ? 4a 3

C、 3a ? 4a 3
x y

D、 ?2a 1 ? a 2
z

3、 已知 a, b, c 均为正数,且都不等于 1,若实数 x, y , z 满足 a ? b ? c , 则 abc 的值等于 ( A、1 ) B、2 C、3 D、4

1 1 1 ? ? ? 0, x y z

4、将正整数中所有被 7 整除的数删去,剩下的数依照从小到大的顺序排成一个数列

?an ? ,则 a100 等于
( A、114 ) C、116 D、117 B、115

5、今有一组实验数据如下: x y 0 1 1 5 2 3 3 1 4 2

最 能 近 似 地 表 达 这 些 数 据 规 律 的 函 数 模 型 是 ( ) B、 y ? bx2 ? ax ? 1 D、 y ? A sin(? x ? ? ) ? B

A、 y ? b ? a x C、 y ? x( x ? a)2 ? b

6、已知函数 f ? x ? ? x2 ? bx ? c ,若方程 f ? x ? ? x 无实根,则 ( )

A、对一切实数 x ,不等式 f ? ? f ? x ?? ? ? x 都成立

B、对一切实数 x ,不等式 f ? ? f ? x ?? ? ? x 都成立 C、存在实数 b 和 c ,使得不等式 f ? ? f ? x ?? ? ? x 对一切实数 x 都成立 D、不存在实数 b 和 c ,使得不等式 f ? ? f ? x ?? ? ? x 对一切实数 x 都成立 7、某流程如右图所示,现输入如下四个函数,则可以 输出的函数是 ( )

A、 f ( x) ? x 2 B、 f ( x) ? 1 ? sin x C、 f ( x) ? ln x ? 2 x ? 6 D、 f ( x) ? lg( x2 ? 1 ? x) 8 、 已 知 点 O 是 ?ABC 所 在 平 面 内 的 一 点 ,
3OA ? 2OB ? 6OC ? 0 且 AB : BC : CA ? 5 : 4 : 3 ,下列结

论错误 的是 .. A、点 O 在 ?ABC 外;





B、 S?AOB : S?BOC : S?COA ? 6 : 3: 2 C、点 O 到 AB, BC , CA 距离的比是 72 : 45 : 40 D、 O, A, B, C 四点共圆; 二、填空题:本大题共 6 小题,每小题 8 分,共 48 分。 9、函数 f ( x) ? cos x ? cos( x ? ) 的最小正周期是 2 得分 . 评卷人

?

10、 设 e1 , e2 是两个不共线的向量, 若向量 a ? e1 ? ? e2 (? ? R) 与向量 b ? ?(? e1 ? 4e2 ) 共线 且方向相同,则 ? ? .

?a ? b ? ?1 ? 11、已知 a , b 满足约束条件: ?2a ? b ? 2 ,则 a ? b 的最大值等于 ? 2 ?b ? a



?? 1 ? x 13 ? ? ? 1, x ? 0 12、已知函数 f ? x ? ? ?? ,则 f ( ) ? 2? 5 ? f x ?1 , x ? 0 ? ? ?

f(

21 ) (填“ ? ”或“ ? ”). 5

13、现有 1000 个苹果,分别装到 10 个箱子里,要求可随意拿到任何数目的苹果但不拆

箱,是否可行?若行,每个箱子放的苹果数分别是多少?若不行,请说明理由; 答 .
? 1 x2 ? y 2 ? ? a, a ? b ? t ? max 14 、 记 m a x 设 a b , ? ? ? ? ? , ? , 其 中 x, y? R , 则 t 的 最 小 值 b , a ? b x y ? ? ?







三、解答题:本大题共 3 小题,共 54 分。 15、 (本题满分 16 分)已知 ?ABC 的内角 A、B、C 的对边分别为 a、b、 得分 评卷人

c,G 为 ?ABC 的重心,且满足 AB CG ? BC AG .
(1)证明: a2 , b2 , c2 成等差数列;

?? ? (2)求函数 y ? 2 3 sin 2 B ? sin ? 2 B ? ? 的最大值. 3? ?

ks5u

16、 (本题满分 18 分)已知函数 f ( x) ? x ?

a ? a, x

得分

评卷人

(1)若方程 f ( x) ? 0 有正根,求实数 a 的取值范围; (2)设 g ( x) ?| xf ( x) | ,且 g ( x) 在区间 [0,1] 上是减函数,求实数 a 的取值范围.

17、 (本题满分 20 分)已知斐波那契数列 ?Fn ? 满足: F1 ? 1 , F2 ? 1 , . Fn? 2 ? Fn?1 ? Fn ? n ? N *? ,若数列 ?Fn?1 ? ? Fn ? 是等比数列( ? 为实常数) (1)求出所有 ? 的值,并求数列 ?Fn ? 的通项公式; (2)求证:
1 1 ? ? F1 F2 ? 1 F2007 ? 7 2

2007 年温州市高一数学竞赛参考答案与评分标准
一、选择题(每小题 6 分,共 48 分) 题号 答案 9、 2? 1 B 10、 ?2 2 B 3 A 4 C 5 C 6 A 7 D 8 D

二、填空题(每小题 8 分,共 48 分) 11、

5 3

12、< 14、 2

13、行,各个箱子放的苹果数依次为 1, 2, 4,8,16,32,64,128, 256, 489 三、解答题(共 54分)

1 1 15、 (1)证明:由已知得 (CB ? CA) ? (CB ? CA) ? ( AC ? AB) ? ( AC ? AB) 3 3
? 2 | AC |2 ?| BC |2 ? | AB |2 --------------------------------------------------------7 分; 即 a2 , b2 , c2 成等差数列; -------------------------8 分;
1 2 2 2 2 ? a ? c2 ? 1 a ? c ? b 2 2 2 2 ? ? (2) 、由(1)得 2b ? a ? c ,? cos B ? 2ac 2ac 2

3 ----------------------------------------------------------------------12 分;
1 3 ? 又因为y ? 3 ? 3 cos 2 B ? sin 2 B ? cos 2 B ? sin(2 B ? ) ? 3 2 2 3

?0 ? B ?

?



?当B ?

?
3

,y











3 3 .-----------------------------------------------16 分。 2
16、解: (1)方程 x ?

a ? a ? 0 有正根 ? 方程 x 2 ? ax ? a ? 0 有正根.-----------2 分 x

? ? a 2 ? 4a
①当 ? ? 0 ,即 a ? 0 或 a ? 4 时,经检验 a ? 4 符合题意.------------------- 4 分
2 ②当 ? ? 0 ,即 a ? 4 或 a ? 0 时,设方程 x ? ax ? a ? 0 的两个根为 x1 、 x2 ,

?x ? x ? 0 a ? 4 时,使得 ? 1 2 成立,所以 a ? 4 符合题意 ? x1 x2 ? 0
a ? 0 时,使得 x1 x2 ? 0
成立,所以 a ? 0 符合题意.

a?4 综 上 , -------------------------------------------------- 9 分
a a2 (2) g ( x) ?| ( x ? )2 ? a ? | 2 4



a?0

a a2 又已知 g ( x) 在区间 [0,1] ? 0 即 0 ? a ? 4 时,g ( x) 在区间 (??, ] 上是减函数, 2 4 a a?2 上 是 减 函 数 , 即 , ? ?1 2 ? 2 ? a ? 4 --------------------------------------------------12 分
①当 a ?

a2 ? 0 即 a ? 4或a ? 0 时,设方程 g ( x) ? 0 的两根为 x1 , x2 且 x1 ? x2 ,此时 g ( x) 4 ?a a ? ?1 在区间 (??, x1 ] 或区间 [ , x2 ] 上是减函数,若 [0,1] ? (??, x1 ] ,则 x1 ? 1 ? ? 2 得 2 ? ?1 f (1) ? 0
②当 a ?
a ? 2 ? a ? 4 -------------------------------------------------15 分

?a ?a a ? ?0 ? ?0 若 [0,1] ? [ , x2 ] ,则 ? 2 此时 a 不存在 ? ?2 2 ? ? ?1 f (1) ? 0 ? x2 ? 1 综上, a ? 2 --------------------------------------------------18 分
17、 (1)解:设 Fn? 2 ? ? Fn?1 ? q( Fn?1 ? ? Fn )(q ? 0) 又因为 Fn? 2 ? Fn ?1 ? Fn 则 Fn? 2 ? (q ? ? ) Fn?1 ? q? Fn

?q ? ? ? 1 ?? ? q? ? 1





? ?1 ? 5? ? ? 1 ?? ? ?? ? ? ? 2 2 或? ? 1? 5 1? 5 ? ? q? q? ? ? ? 2 ? 2

5
ks5u

--------------------------------3 分;
? ?1 ? 5 ? ?1 ? 5 ? ? ? ? ? ? ?数列 ? Fn ?1 ? Fn ? 和 ? Fn ?1 ? Fn ? 都是等比数列 2 2 ? ? ? ? ? ? ? ?

? ?1 ? 5 1? 5 n Fn ? ( ) ? Fn ?1 ? ? 2 2 ?? ?1 ? 5 1? 5 n ? Fn ?1 ? Fn ? ( ) ? ? 2 2
两 式 相 减 得 ,
Fn ? 1 5 [ ? 2 1 (n ? ? 2
n

5

)

1 (

----------------------------------------8 分; (2)证: 显然 Fn ? 0 ,? Fn?2 ? Fn?1 ? Fn ? Fn?1 ,? F n ? 为递增数列.

?

? Fn?2 ? Fn?1 ? Fn ? Fn ? Fn





Fn?2 ? 2Fn

------------------------------------------12 分;

? F7 ? 2F5 ? 2 ? 5, F9 ? 2F7 ? 22 F5 ? 22 ? 5,
? F8 ? 2F6 ? 2 ? 8, F10 ? 2F8 ? 22 F6 ? 22 ? 8,

, F2007 ? 2F2005 ? 22 F2003 ?
, F2006 ? 2F2004 ? 22 F2002 ?

? 21001 F5 ? 21001 ? 5
? 21000 F6 ? 21000 ? 8

------------------------------------------16 分;

?

1 1 ? ? F1 F2 1

?

1 F2007

1 1 1 1 1 1 ? 1?1? ? ? ? ? ( ? 2 ? 2 3 5 8 2?5 2 ?5

?

1 2
1001

?5

)?(

1 1 ? 2 2?8 2 ?8

1 1 1 1 [1 ? ( )1001 ] [1 ? ( )1000 ] 5 1 1 1 1 2 1 5 1 1 1 1 1 2 2 ? ? 1000 ) ? ? ? ? ? ? ? ?2 ? ? ? ? ? ? 1 1 2 ?8 2 3 5 8 5 8 2 3 5 8 5 8 1? 1? 2 2 5 59 7 ? ? ? 2 60 2

?

1 1 ? ? F1 F2

?

1 7 ? --------------------------------------------------20 分; F2007 2


相关文章:
2008年浙江省温州市摇篮杯高一数学竞赛试题
2008 年浙江省温州市摇篮杯高一数学竞赛试题(2008 年 4 月 13 日)本卷满分为 150 分,考试时间为 120 分钟 题号 得分 一、选择题:本大题共 8 小题,每小...
2007年浙江省温州市摇篮杯高一数学竞赛试题
2007年浙江省温州市摇篮杯高一数学竞赛试题_学科竞赛_高中教育_教育专区。2007 年浙江省温州市摇篮杯高一数学竞赛试题 (2007 年 4 月 15 日) 1、已知集合 A ?...
2007年浙江省温州市摇篮杯高一数学竞赛试题
2007 年浙江省温州市摇篮杯高一数学竞赛试题一、选择题:本大题共 8 小题,每小题 6 分,共 48 分。 1、已知集合 A ? ?x | x ? 1, x ? R? , A ...
2015年温州市高一摇篮杯数学竞赛试题(含答案)
2015 年浙江省温州市摇篮杯高一数学竞赛试题 2015 年 4 月一、选择题:本大题共 10 小题,每小题 5 分,共 50 分. 1. 已知全集 U ? Z ,则 (CU A) ...
2007年浙江省温州市摇篮杯高一数学竞赛试题
2007年浙江省温州市摇篮杯高一数学竞赛试题(2007年4月15日) 本卷满分为150分,考试时间为120分钟2007年浙江省温州市摇篮杯高一数学竞赛试题(2007年4月15日) 本卷...
2007年温州市摇篮杯高一数学竞赛试题及答案
温州市摇篮杯数学竞赛试题温州市摇篮杯数学竞赛试题隐藏>> 2007 年浙江省温州市摇篮杯高一数学竞赛试题(2007 年 4 月 15 日) 1、已知集合 A = { x | x ≠...
2007年温州市摇篮杯高一数学竞赛试题及答案
2007年温州市摇篮杯高一数学竞赛试题及答案_学科竞赛_高中教育_教育专区。2007 年浙江省温州市摇篮杯高一数学竞赛试题(2007 年 4 月 15 日) 1、已知集合 A ? ...
2007年浙江省温州市摇篮杯高一数学竞赛试题
2007 年浙江省温州市摇篮杯高一数学竞赛试题(2007 年 4 月 15 日)本卷满分为 150 分,考试时间为 120 分钟 题号 得分 一、选择题:本大题共 8 小题,每小...
2013年浙江省温州市摇篮杯高一数学竞赛试题及答案
2013年浙江省温州市摇篮杯高一数学竞赛试题及答案_学科竞赛_初中教育_教育专区。2013年浙江省温州市摇篮杯高一数学竞赛试题及答案www.zx sx.com ...
2009年温州市摇篮杯高一数学竞赛试卷及答案
温州市摇篮杯数学竞赛试题温州市摇篮杯数学竞赛试题隐藏>> 2009 年浙江省温州市摇篮杯高一数学竞赛试题一、选择题:本大题共 8 小题,每小题 6 分,共 48 分。...
更多相关标签:
温州市摇篮杯数学竞赛 | 温州市高一物理竞赛 | 2016温州市摇篮杯 | 摇篮杯创业竞赛 | 摇篮杯创业竞赛说明会 | 2013年摇篮杯高一数学 | 浙江省温州市 | 浙江省温州市瑞安市 |