当前位置:首页 >> 电力/水利 >>

贝克休斯随钻测井工具


Logging While Drilling Formation Evaluation

6.随钻测井工具

April 2nd, 2010
? Baker Hughes Incorporated. All Rights Reserved. ? 2009 Baker Hughes Incorporated. All Rights

Reserved.

|1

内容提要
1. 随钻测井地层评价技术概述 2. 随钻定量评价砂泥薄互层油气藏 3. 随钻地震和井间压裂实时监测

2

?? 2009 Baker Hughes Incorporated. All Rights Reserved. 2009 Baker Hughes Incorporated. All Rights Reserved.

随钻地层评价技术
Teleco

随钻测量 数据传输 电阻率 放射性测井
高级地层评价: 地层压力 伽玛成像 电成像 核磁共振 地震测井

NaviTrak OnTrak GyroTrak BCPM II EM Telmetry 数字钻杆 侧向电阻率 (RGD) 双频传播电阻率 (DPR) 多频传播电阻率 (MPR) DeepTrak
三重组合随钻测量 LithoTrak

声波

SoundTrak TesTrak Az. Gamma StarTrak MagTrak Seismic Checkshot

3
Copyright Baker Hughes Inc. 2007
? Baker Hughes Incorporated. All Rights Reserved.

|3

贝克休斯随钻测井地层评价技术系列
? 随钻自然伽玛和电阻率测井 – OnTrak(LWD/MWD) ? 随钻方位电阻率测井 – AziTrak ? 随钻中子密度孔隙度测井 – LithoTrak ? 随钻声波测井 – SoundTrak ? 随钻地层压力测试器 – TesTrak ? 随钻高分辨率电阻率成像测井– StarTrak ? 随钻核磁共振测井– MagTrak ? 钻头电阻率 – ZoneTrakTM

贝克休斯公司英特的标志 –工具以 TRAK结尾
4 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

Baker Hughes Key LWD Formation Evaluation Services & Technologies

Flu Re id Sa ser t ve urati Es on tim ate s

Fluid S a Reserv turation e Estim ates

Ge Im olog ag ica i ng l I nte rpr eta ti

re Ma na ge me

nt

on

Pr e

Geolog

Pressur
5

e Manag ement

ical Int er Imagin pretation g

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Ro Flu ck Qu id Ty ality pin (k) g

ssu

We Re llbor ser e P vo ir N lacem avi en ga t tio n

Wellbor Reservo e Placement ir Navig ation

Rock Qu ali Fluid Ty ty ping

贝克休斯英特随钻测井工具组合
AutoTrak G3 导向短节
井斜 1.0m (3.1ft) 井筒压力 4.7m (15.4 ft)

OnTrak 传感器模块
电阻率 6.1m (20.0ft) 方位 7.8m (25.6ft)

AutoTrak G3 双向通讯和导电模块

ATK G3
自然伽玛+自然伽玛成像

OnTrak?
振动和粘滑

BCPM

5.0m 16.4ft)

7.8m 25.6ft)

体积密度+密度成像 15.6m (51.2ft)

井径校正中子孔隙度 声波 18.0m (59.0ft) 16.0m (52.5ft) 22.1m (72.5ft) 井径

核磁共振 34.3m (112.5ft)

地层压力测试器 45.0m (147.6ft)

LithoTrakTM

SoundTrak?

MagTrak?

TesTrak?

6

? 2009 Baker Hughes Incorporated. All Rights Reserved.

OnTrak–随钻自然伽玛和电阻率测井

7

? 2009 Baker Hughes Incorporated. All Rights Reserved.

2 MHz补偿电阻率
? 注意: 400kHz 具有相同的模式
长源距 短源距

井下工具 计算相位差和衰减电阻率
P22HM A22HM

T2 T4
P21HM A21HM P42HM A42HM

井下工具 计算相位差和衰减电阻率

RPCHM RACHM RPCHX RACHX

PD12HM AT12HM PDBCHX ATBCHX

R2
P12HM A12HM

P41HM A41HM P32HM A32HM

PD34HM AT34HM PDBCSHX ATBCSHX

RPCSHM RACSHM RPCSHX RACSHX

R1
P11HM A11HM

P31HM A31HM

3 地面电脑的处理步骤
1) 应用空气零长 2) 电阻率转换 3) 井眼校正

T3 T1

3 地面电脑的处理步骤
1) 应用空气零长 2) 电阻率转换 3) 井眼校正

8

? 2009 Baker Hughes Incorporated. All Rights Reserved.

曲线命名规则
? 最终曲线 (8 条)

补偿和校正

R PCSHM
电阻率 相位差 短源距 高频 内存 或 X = 实时 或 L = 低频 或 A = 衰减 缺失代表长源距

9

? 2009 Baker Hughes Incorporated. All Rights Reserved.

随钻测井工具OnTrak技术参数

? RPCEHM—0.1~3000 欧姆.米 ? RACEHM—0.1~500 欧姆.米

RPCELM—0.1~1000 欧姆.米 RACELM—0.1~200 欧姆.米

? MPRTEQ是英特公司专门针对随钻电阻率测井的原始测量值进行固定探测深度的

电阻率处理程序,同时它消除了各向异性和介电常数变化对电阻率的影响。经过 处理,可以获得探测深度分别为10”, 20” , 35”, 60”和120”的电阻率值。

10

? 2009 Baker Hughes Incorporated. All Rights Reserved.

探测深度
90”

90 80 70 60

探测半径
82”

Rt=1 / Rxo=0.1 Rt=10 / Rxo=1 Rt=100 / Rxo=10

衰减
59”

相位差
49” 47”

探测半径 (in)

39”

40 30 20 10 0

48”

50

33”

29”

30”

35”

36”

26”

23”

24”

22”

21”

18”

23”

17”

16”

40 短 0k 源 H 距 相 位 差

11

? 2009 Baker Hughes Incorporated. All Rights Reserved.

40 0k H

减 衰 H 0k 40 源距 短

40 0k H

2M H

H 2M



2 短 MH 源 衰 距 减

相 位 差



2 短 MH 源 相 距 位 差

衰 减

相 位 差

13”

18”

28”

随钻测井与电缆测井的电阻率对比

12

? 2009 Baker Hughes Incorporated. All Rights Reserved.

OnTrak Raw Data + Advanced Processing = Enhanced Reserves

LithoTrak Porosity OnTrak Gamma? Ray

Water? Saturation

Advanced?Processed? OnTrak Resistivity
? 2009 Baker Hughes Incorporated. All Rights Reserved. 13 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

Gamma Ray – Azimuthal Imaging

Gamma?Ray

Sectored Gamma?Ray?Image

14

? 2009 Baker Hughes Incorporated. All Rights Reserved.

自然伽玛成像(OnTrak)

8 扇区内存成像

8扇区实时传输

实时层界面和地层倾角解释

15

? 2009 Baker Hughes Incorporated. All Rights Reserved.

? AziTrak --方位电阻率

16

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Reservoir Navigation – Challenges in Wellbore Placement

Shale

Shale

Modeled?OnTrak Tool?Response

Curve?separation?indicates?approaching?bed?boundary Do?we?steer?up?or?down?
17 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

AziTrak? - Bed Boundary Detection
Placing two receivers coils fully orthogonal in a Multiple Propagation Resistivity tool, allows us to measure azimuthal information of the surrounding environment while the tool rotates

18

? 2009 Baker Hughes Incorporated. All Rights Reserved.

AziTrakTM – Real-time Deep Azimuthal Resistivity Imaging

Copyright Baker Hughes Inc. 2008 19 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

AziTrakTM – Real-time Deep Azimuthal Resistivity Imaging

20

Copyright Baker Hughes Inc. 2008 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

钻头电阻率 TM ZoneTrak

21

? 2009 Baker Hughes Incorporated. All Rights Reserved.

ZoneTrakTM – Resistivity at Bit
LWD Resistivity? at??Bit

Enables geostopping by formation change detection Casing point selection Core point selection Wellbore stability / over-pressured zones Geological interpretation with seismic correlation Salt drilling applications – exit and entry Operates in both WBM and OBM environments Currents at receiver used to determine apparent resistivity

22

? 2009 Baker Hughes Incorporated. All Rights Reserved.

ZoneTrakTM – Resistivity at Bit - Geostopping

Formation? Change?!!!
21?ft

23

? 2009 Baker Hughes Incorporated. All Rights Reserved.

LithoTrak--随钻中子密度孔隙度测井

24

? 2009 Baker Hughes Incorporated. All Rights Reserved.

什么是LiThoTrak?
? 一个提供下述测量值的随钻测井工具:

– 体积密度 (ρb)

岩石 n 流体

– 中子孔隙度

– 井径和岩石密度成像

x560
25 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

x610

x660

x710 Feet

Feet

x760

x810

测井环境
电缆测井
泥饼 地层

vs.
泥浆

随钻测井
泥岩

放射源

短源距探头
砂岩

长源距探头

26

? 2009 Baker Hughes Incorporated. All Rights Reserved.

电缆测井需要作泥饼校正 随钻测井需要作泥浆校正

LithoTrak 优势
准确的测量
LWD

? 石油工业中准确的随钻密度孔隙度测井
LWD LWD LWD

27

? 2009 Baker Hughes Incorporated. All Rights Reserved.

LithoTrak应用
中子-密度交会识别气层 中子-密度交会识别气层
电缆-随钻测井对比 自然伽玛
Measured Depth (feet)

MPRTEQ 电阻率

LithoTrak 孔隙度
0.2 0.2

电缆阵列感应 电阻率
M2RX
ohm-m 20 20

电缆 孔隙度

M2R9
ohm-m

Wireline Delta-T
50 40 20 20 us/ft 150 140 120 120

RES60
0.2 0.2 0.2 0.2 ohm-m 20 20 8.5 20 60 20 60 -0.4

Delta-Rho
g/cc 0.1 0.2 18.5 0.2 0 0.2 0 0.2

M2R6
ohm-m 20 20 0 20 60 20 60 -0.4

Delta-Rho
g/cc 0.1 10 0 0

Wireline SP
mV

RES35
ohm-m

Ultrasonic Caliper
inches

M2R3
ohm-m

Differential Caliper
inches

Wireline Gamma Ray
API

RES20
ohm-m

Neutron Porosity
pu

M2R2
ohm-m

Neutron Porosity
pu

LWD Gamma Ray
API

RES10
ohm-m

Density Porosity
pu

M2R1
ohm-m

Density Porosity
pu

12900

28

? 2009 Baker Hughes Incorporated. All Rights Reserved.

密度成像应用
实时倾角拾取和油藏地质导向

29

? 2009 Baker Hughes Incorporated. All Rights Reserved.

密度成像应用
? 与电缆成像测井比较

? Beta test BHF10 well was: 8 ?” hole size, ORD v.2.50 tool, Shale and Sandstone F/1270’ T/1290’, Inclination of 43 deg and 310 Deg azimuth, average ROP of 35 ft/hr and 100 RPM, 9.0 ppg fresh water mud.
30 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

钻井过程中及倒划眼时的井眼变化
随钻成像 倒划眼成像

倒划眼井径 随钻井径

32

? 2009 Baker Hughes Incorporated. All Rights Reserved.

密度成像显示井眼的高边垮塌

井眼垮塌

33

? 2009 Baker Hughes Incorporated. All Rights Reserved.

密度成像显示井眼良好

34

? 2009 Baker Hughes Incorporated. All Rights Reserved.

井径成像

16 sectors
35 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

StarTrak–随钻高分辨率电阻率成像测井

36

? 2009 Baker Hughes Incorporated. All Rights Reserved.

StarTrak测量电极

37

? 2009 Baker Hughes Incorporated. All Rights Reserved.

高分辨率随钻电成像特点
? 单探头安装在旋转钻铤上

– 没有滑动模式 – 100% 井眼覆盖 – 电流聚焦(类似侧向测井)
? 高分辨率

– 内存数据分120个扇区 – 实时传输可分16/32/64 扇 区
? 为钻井设计

– 适应大范围的转速和机械 钻速 – 能适应扭矩振动
? 工具带有磁力计

38

? 2009 Baker Hughes Incorporated. All Rights Reserved.

电成像与伽玛和密度成像的比较?
构造地层 伽玛 成像

密度 成像

电阻率 成像

裂缝

薄层细节

? 通常可通过StarTrak高分辨率电阻率成像分析微裂缝和地层沉积特征

39

? 2009 Baker Hughes Incorporated. All Rights Reserved.

正常的砂岩层
? 电阻率成像 通常与该井的岩芯作比较

40

? 2009 Baker Hughes Incorporated. All Rights Reserved.

裂缝和孔洞

41

? 2009 Baker Hughes Incorporated. All Rights Reserved.

交错层理

42

? 2009 Baker Hughes Incorporated. All Rights Reserved.

裂缝识别

内存成像和 实时成像比较 实时成像64扇区. 内存成像120 扇区. 井眼直径 8.5”, ROP ≈ 60 ft/hr及90 - 110 RPM.
43 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

裂缝识别

内存成像: 120 扇区. 井眼直径 8.5”, ROP ≈ 150 ft/hr 及 90 – 110RPM.

44

? 2009 Baker Hughes Incorporated. All Rights Reserved.

随钻井眼稳定性分析

45

? 2009 Baker Hughes Incorporated. All Rights Reserved.

胶结后的结核

46

? 2009 Baker Hughes Incorporated. All Rights Reserved.

时间推移后的侵入特征
电阻率随时间推移产生变化

47

? 2009 Baker Hughes Incorporated. All Rights Reserved.

随钻测井成像的纵向分辨率

? Resolution (pixel size):
? GR: ~8” ? Density: ~3.5” ? Short Spacing Density: ~1.5” ? Resistivity (StarTrak): ~0.25”

48

? 2009 Baker Hughes Incorporated. All Rights Reserved.

SoundTrak–随钻声波测井

49

? 2009 Baker Hughes Incorporated. All Rights Reserved.

声波传播途径
单极子 偶极子 四极子

50

? 2009 Baker Hughes Incorporated. All Rights Reserved.

SoundTrakTM – Real-Time Shear

Real-Time Real-Time shear shear

Memory Memory Shear Shear

Corrected Corrected Shear Shear

51 ? 2009 Baker Hughes Incorporated. All Rights Reserved. 51 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

声波数据的应用
ΔT
密度

岩石机械特性 井眼稳定性 各向异性

实时地震标定 AVO分析

φ = Δt - Δt
声波孔隙度
实际

Δtf - Δtmtx

mtx

超 压

孔隙压力预测
压力 静水

预测

次生孔隙度

52

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Pore Pressure Analysis – Kick Avoidance
Accurate compressional slowness, in addition to real-time resistivity data, as input to pore pressure prediction for real-time decision making enhances safety while drilling.

Well Control Cost: Greater than $12M
54 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

Real-Time LWD Acoustic Applications
Geomechanics Synthetic Seismogram Light Hydrocarbon Detection

55

? 2009 Baker Hughes Incorporated. All Rights Reserved.

SoundTrakTM – Unique Permeability Answers

Stoneley Sensitivity Comparison

time

time

frequency

frequency

LWD

Wireline Wireline

56

? 2009 Baker Hughes Incorporated. All Rights Reserved.

MagTrak–随钻核磁共振测井

57

? 2009 Baker Hughes Incorporated. All Rights Reserved.

核磁共振基础
25

可动水
20

油气 油气 叠加

孔隙度 %

1 5

10

5

0

0

100

200

时间 (ms)

300

400

500

600

毛管水 毛管水
孔隙度部分

4 3 2 1

T2 截止值

粘土束 粘土束缚 缚水 水

可动水
58 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

0 0.1 1 10 100 1000

T2

核磁共振基础
时间 (ms)
4 孔隙度部分 3 2 1 0 0.1 1 10 100 1000

T2 截止值

粘土束缚 水

毛管水 可动水

轻烃

渗透率

59

? 2009 Baker Hughes Incorporated. All Rights Reserved.

数据采集模式
基于目标的NMR数据采集
? 孔隙度渗透率-MT推导出NMR地层评价参数

CBW

BVI

BVM

岩石骨架

干粘土

粘土束 毛管束缚 自由水 水 缚水



φe
? 孔隙度渗透率-MT+轻烃
– 增加特殊顺序进行轻质油分析

φt

60

? 2009 Baker Hughes Incorporated. All Rights Reserved.

应用
? 在复杂岩性和水平井中确定净毛比 ? 渗透率分析 ? 流体性质和粘度分析 ? 地质导向 ? 无放射性源的地层评价 ? 实时压力测试点的确定

61

? 2009 Baker Hughes Incorporated. All Rights Reserved.

MagTrak? - High Quality Real Time T2 Distribution

Memory

Real‐Time

Real‐Time

62

? 2009 Baker Hughes Incorporated. All Rights Reserved.

MagTrak? Example – Landing Well in the Oil Zone
Gamma Ray LWD Resistivity T2 Distribution Porosity

Shale Shale

Data QC

Gas Gas

Gamma Ray

ROP Stationary Data (Validation)

MagTrak Permeability

Oil Oil

63

? 2009 Baker Hughes Incorporated. All Rights Reserved.

随钻地层压力测试器
TesTrak? - Answers when they really matter

从电缆测井到随钻测井
? Wireline Technology proven over Decades ? Introduction of FPWD Tools in 2000
DFT Pathfinder 2000 GeoTap Halliburton 2002 TesTrak Baker Hughes 2003 Compact MFT Weatherford 2004 Stethoscope Schlumberger 2005

65

? 2009 Baker Hughes Incorporated. All Rights Reserved.

TesTrakTM Formation Pressure While Drilling

8? 6?

4?

66

? 2009 Baker Hughes Incorporated. All Rights Reserved.

TesTrakTM Formation Pressure Tester
Tool Size Hole Size Stabiliser Tool Lenght 4 3/4" 5 3/4" - 6 1/2" 5 5/8" 26 ft
Pad Sealing Element

6 3/4" 8 3/8" - 10 5/8" 8 1/8" 24.2 ft

8 1/4" 10 5/8" - 17 1/2" 12" 24.4 ft

Memory Dump Port

8 1/8” Centralizer
67 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

TesTrak Job Summary in China
? Total of 83 Runs up to Feb-2010
Customers/TTK ConocoPhillips ROC Oil Anadarko 3 Runs

8 ?”
26Runs

6 ?”
39 Runs 14 Runs

4 ?”
1 Runs

68

? 2009 Baker Hughes Incorporated. All Rights Reserved.

LWD Formation Pressure Testing
? Wireline and LWD:
? Pore Pressure ? Near–Wellbore Mobility ? Gas / Oil / Water Contacts ? Reservoir Connectivity ? Reservoir Extent

? While Drilling Advantages:
? Early Pressure and Mobility Data ? Pressures in HZ and ERD Applications ? Managed Pressure Drilling ? Increased Safety, less NPT ? Drive Drilling and Casing Program ? Depletion Level Monitoring ? Reduce / Optimize Logging Time After Drilling ? Reduced Cost, Eliminate WL Fishing

69

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Real-Time Information
4500

– Annulus Pressures – Formation Pressures – Draw Down Pressures – Mobility
(downhole FRA)

4000

Pressure [psi]

3500

3000

2500

2000 90 110 130 Time [s] 150 170

– Quality Indicator
Final Build Up Criteria FRA Correlation

70

? 2009 Baker Hughes Incorporated. All Rights Reserved.

TesTrak Operation

71

? 2009 Baker Hughes Incorporated. All Rights Reserved.

SmartPad? in Soft Formation
? TesTrak‘s unique SmartPad?

closed loop intelligence optimizes the pad pressure during a test station to initiate and maintain sealing efficiency

72

? 2009 Baker Hughes Incorporated. All Rights Reserved.

What About Accuracy?

73

? 2009 Baker Hughes Incorporated. All Rights Reserved.

TesTrak – Wireline Comparison
Formation Pressure Comparison TesTrak (Blue) - MDT (Red)

3260 x Formation Pressure [psia] 3255 x 3250 x 3245 x

x 3240
3235 x 3230 x x 4750 4800 x 4850 x 4900 x 4950 x MDRT [m] 5000 x 5050 x 5100 x 5150 x

74

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Applications

75

? 2009 Baker Hughes Incorporated. All Rights Reserved.

TesTrak ?

“Connectivity Mapping While Drilling”
Test Objectives

– Verify connectivity of C-sands – Try pressure measurements in M-sand
S N
Depth m TVDSS
-1500 GOC GOC -1550 OWC OWC -1600

-1650

Coarse clean sand (C-sand) Fine micaceous sand (M-sand) Heterogeneous sand
0 1000 2000
Km 0.4

TesTrak station
-1700 3000

C 4000

Courtesy of Hydro

76

? 2009 Baker Hughes Incorporated. All Rights Reserved.

0

0.2

0.6

0.8

1.0

Gradient Analysis – Data Integration

77

? 2009 Baker Hughes Incorporated. All Rights Reserved.

随钻定量评价砂泥薄互层油气藏
Quantifying Hydrocarbon Reserves in Laminated Sand-Shale Sequences (Using LWD Resistivity and Porosity)

Rv

Rh Rh
78 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

Reservoir Quantification - Laminated Sand Shale Sequences
? How do we quantify resistivity when the sensor resolution is insufficient to measure the thin lamina?

79

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Low Resistivity, Low Contrast Pay
20 Gamma Ray 120 0.2 Resistivity 20 60% Porosity & Density 0%

Sw ≈ 65% Bulk?Method

80

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Reservoir Quantification - Laminated Sand Shale Sequences

Gamma?Ray?&?Caliper

LWD?TRF?Resistivity

Bulk?Density??&?Neutron?Porosity

XX00

Pay??

Rt <?1?Ω.m

XX50 Shale? Base?Line

81

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Induction Resistivity Response in Laminated Sand-Shale Sequences
10

Rsd = 10 Ω.m, Rsh = 1 Ω.m
Isotropic Sand – Isotropic Shale Volumetric Balance

Resistivity (Ω.m)

8

Rv
6

Vsand + Vlam = 1
Parallel Resistivity

Rh

5.5 ?.m

In 50% Net to Gross Sequences with…… Rsd = 10 ?.m and 1sh = Vsand R 1 ?.m…… lam V = + …….sensor reads 1.8 ?.m

4

Rv / Rh

Rh

Rsand

Rsh

Series Resistivity
2
1.8 ?.m

Rv = Vsand Rsand + Vlam Rsh
Anisotropy Ratio
0 0.2 0.4 50 % 0.6 0.8 1

0 Fractional Volume of Laminar Shale

Rv / Rh

82

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Isotropic Sand & Shale Resistivity Model
Laminar sand conductivity Laminar shale volume

Csd

Csh ? Ch = Cv Csh ? Cv
0.5 1 Resistivity Ω.m 10

V lam =

C h ? C sd C sh ? C sd

Rh = 1.8 Ω.m Rv = 5.5 Ω.m

`

Rsd = 10 Ω.m

10 Ω.m Sand, 1 Ω.m Shale Vlam = 50%
83 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

Isotropic Sand & Anisotropic Shale Resistivity Model

Csh

Anisotropic Shale

v

Csh Csd

h

Isotropic Sand

Csd

84

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Induction/Propagation Resistivity Response
Laminated Sand-Shale Sequences
0.5 1 Resistivity Ω.m 10
10 ?.m Sand, 1 ?.m Shale

Vertical resolution

Cshale
`

Rh = 1.8 ?.m

Csand Cshale >> Csand
Horizontal Conductivity Averaging Equation:

C horiz = ( 1 ? V lam ) C sand + C shale V lam
85 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

Reservoir Quantification - Laminated Sand Shale Sequences

Gamma?Ray?&?Caliper

Processed?Resistivity

Density??&?Porosity

Conventional?Analysis? using?horizontal?resistivities (bulk?parameters)?

n Sw =

a × Rw φtm ×R t

XX00

Net?Pay 2?ft

Average? Sw =?54%

XX50

86

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Reservoir Quantification - Laminated Sand Shale Sequences

Gamma?Ray?&?Caliper

Processed?Resistivity

LWD?TRF?Resistivity

Density??&?Porosity

Anisotropy?Ratio

Indicator?of? Potential?Pay
XX00

RDIP?Angle 48°

Horizontal? Resistivity,??Rh
XX50

Vertical? Resistivity,??Rv

87

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Which Porosity Do We Use?
Laminated Sand-Shale Formation

Vertical Resolution

sand shale

Proper reservoir characterization requires the correct determination of the laminar sand fraction porosity
88 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

Laminar Sand Fraction Porosity
Volume of Sand = 50%

φSand = 35%

Assume Equal Volumes of Sand & Shale

φShale = 15%

Volume of Shale = 50%

89

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Laminar Sand Porosity – Sand Fraction Component
Volume of Sand = 50%

Total (average) measured porosity

φt = φsh ?Vsh + φsd ?Vsd = 25%
Effective (shale corrected) porosity

φsand = 35%

φ e = φ t ? V sh ? φ sh = 17 .5 %
True laminar sand total porosity corrected for laminar shale effects φshale = 15%
Volume of Shale = 50%

φt =
sd

φt ? Vlam ? φsh
(1 ? Vlam )

= 35%

90

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Total Porosity Vs. Shale Volume – Gulf of Mexico
“True laminar sand total porosity” corrected for laminar shale effects using the Thomas-Stieber model

φt =
sd
7

φt ? Vlam ? φsh
(1 ? Vlam )

= 35%

14

22

75

Total Porosity - Φt

50

29
25

Laminated Sand-Shale Sequence Zone

Shale Volume - Vsh
91 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

Sand?Fraction Resistivity Using?Rv &?Rh
XX00

Laminated?Sand‐Shale?Analysis using?horizontal?&?vertical?resistivities (fractional?parameters)?
Average??Sand? Fraction Sw <?30%

Sand?Fraction Porosity
XX20

Perforated? Interval
92 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

Net?Pay (Conventional)?‐ 2?ft
XX40

XX20

n Sw =

a × Rw φtm × R t

Net?Pay? (Tensor)?– 20?ft
n S w( sd ) =

a × Rw φtmsd ) × R t ( sd ) (

Added Value - Enhanced Reserve Estimates - Conventional Vs. Tensor Analysis
Net?Pay?Enhancement
20 18 16 Net Pay Footage (ft) 14 12 10 8 6 4 2 0 Conventional Analysis LSSA Tensor Analysis

20

Production
August 2005 – July 2009
2

HC?Saturation?Enhancement
80 70 60 50 40 30 20 10 0 Conventional Analysis LSSA Tensor Analysis

4.5 BCF Gas
12.9 k BO 20.5 k BW
Hydrocarbon Saturation (%)

70

46

93

? 2009 Baker Hughes Incorporated. All Rights Reserved.

? 随钻地震 – Seismic-While-Drilling ? 井间压裂实时监测 – Microseismic

94

? 2009 Baker Hughes Incorporated. All Rights Reserved.

随钻地震
Seismic-While-Drilling

95

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Seismic While Drilling Process
? Synchronise clocks on surface – receiver & source ? Drill ? Measurements during connections – While no circulation for quiet environment – Position seismic source – air guns – Battery power source ? Drill to TD shooting at each connection ? POOH ? Memory dump of raw data – full wavetrace ? VSP processing

96

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Seismic While Drilling – Look Below the Bit
? Benefits: ? Control drilling parameters when you enter high risk zones
– Pressurized zones – Base of salt rubble zones – Depleted zones

? Choose your casing point ? Reduce your NPT

97

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Seismic While Drilling – Look Below the Bit
? Real-time wavetrace transmission
– Enabled by proprietary compression and stacking algorithms

98

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Seismic While Drilling – Update Surface Seismic Models Real-Time
? Drilling wells without seismic while drilling

?WL seismic survey – 1 day ?Abandon original well – 1 day ?Sidetrack drill – 4 days

99

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Seismic While Drilling – Update Surface Seismic Models Real-Time
? Drilling wells with seismic while drilling

100

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Baker Hughes Seismic While Drilling
? Enables you to forecast ahead of the bit ? Provides you with updated surface seismic models in real-time
– Increase your probability of hitting the target – You avoid unnecessary side-tracks – Reduce your operating costs

? Gives you wireline quality surveys while drilling with minimal flat time and in high angle wells

101

? 2009 Baker Hughes Incorporated. All Rights Reserved.

井间压裂实时监测 Microseismic

102

? 2009 Baker Hughes Incorporated. All Rights Reserved.

The Earth Speaks …
We Listen

103

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Microseismic The Earth Speaks …We Listen

104

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Micro Seismic Mapping Set Up Creation of a Velocity Model Is the First Step
Observation well Receivers
Velocity layers are assigned based off advanced acoustic logs Velocities are computed using perforation location and tool location Horizontal velocities for formations computed Location errors minimized.

Treatment well V5

V4

V3

V2 V1 Ray paths Perforation location

105

? 2009 Baker Hughes Incorporated. All Rights Reserved.

Micro Seismic Monitoring Comes in Different Versions
Offset well Microseismic monitoring
~ 2000m

Surface Array monitoring (passive tomography; noise migration & stack) Subsurface antenna in a dedicated borehole
(large aperture microseismic monitoring)

~ 400m

~ 2500m

Treatment well Micro seismic Permanent long term Reservoir monitoring Production / depletion fracturing drainage Hydrofrac Barrier to fluid flow Structural features / sub critical stress regime Hydraulic fracture monitoring

106

? 2009 Baker Hughes Incorporated. All Rights Reserved.

How Far Can I See?
Ft Worth Barnett Woodford Cotton Valley Granite Wash Canyon Sands Cleveland Wilcox San Andres Devonian Bakken Bossier Fayetteville Mesa Verde Niobrara Shale Frontier Sandstone 1200’-2500’ (may see further, less in more ductile shales) 2000’ 2000’ 1200’ 1500’ 1500’ 1200’ 800’ 1500’-2000 (foam/LSF) 1000-2200’ 1500’ 2400’ 800-1200’ 2200’ (Niobrara chalk zero) 1000’

Viewing distance is affected by pumping rate and rock properties

107

? 2009 Baker Hughes Incorporated. All Rights Reserved.

贝克休斯英特随钻测井工具系列
? 随钻自然伽玛和电阻率测井 – OnTrak(LWD/MWD) ? 随钻方位电阻率测井 – AziTrak ? 随钻中子密度孔隙度测井 – LithoTrak ? 随钻声波测井 – SoundTrak ? 随钻地层压力测试器 – TesTrak ? 随钻高分辨率电阻率成像测井– StarTrak

+

? 随钻核磁共振测井– MagTrak ? 钻头电阻率 – ZoneTrakTM

随钻地震 – SWD-VSP 井间压裂监测 – Micro Seismic
108 ? 2009 Baker Hughes Incorporated. All Rights Reserved.

谢谢!
Thank You

109

? 2009 Baker Hughes Incorporated. All Rights Reserved.


相关文章:
随钻声波测井技术综述
具体而言,从上世纪 90 年代起,贝克休斯、哈里伯顿、斯伦贝谢三大公司就率先开始 了随钻声波测井的研究,并逐渐占领随钻测井的国际市场份额。APX 随钻声波测井 仪,CLSS...
随钻地质工程一体化系统
和三维地质导向组成,其使用到的核心技术是贝克休斯在全球使用的随钻地质导向软件(...新型随钻测井系统 暂无评价 4页 ¥2.00 旋转导向钻井工具随钻测... 4页 2...
随钻测井测井评价技术新进展
3 随钻测井最新技术现状斯伦贝谢、贝克休斯、哈里伯顿、威得福等大的油田技术服务公司都已开发 出成套随钻测井装备,Geolink、GE 能源等公司开发了随钻测量和随钻电阻率...
国外主要测井公司介绍
斯仑贝谢油田服务公司的随钻测井服务能力也很强大。 许多先进的随钻测井仪器, 如...第三节贝克-阿特拉斯公司 贝克-阿特拉斯公司是贝克休斯公司下属的 6 个主要子...
透视石油工业的十大技术
斯伦贝谢、贝克休斯、哈里伯顿等公司 都已开发出成套随钻测井装备。 目前,国外随钻...随钻测井系 统(“眼”)、电子自动控制系统(“脑”)和自动导向工具(执行机构)...
世界各大测井集团仪器编码表
(贝克休斯 INTEQ 公司 随钻测井) 公司.-随钻测井 随钻测井) ( AP APX CCN Annular Pressure (环空压力仪) Accoustic Porosity Explorer (声波孔隙度探测仪) ...
美国贝克休斯公司
在随后的近 80 年的发展 中,贝克公司和休斯公司各自成了石油业完井、钻井工具...测井公司、西人 -克里斯滕森和 Drilex 垂直钻井和金刚石钻头公司、 Teleco 随钻...
刘新平 随钻测井数据传输技术应用现状及展望
国际三大石油技术服务公司斯伦贝 谢、哈里伯顿和贝克休斯代表着当今世界随钻测井技术...参考文献: [1] 苏义脑,窦修荣.随钻测量、随钻测井与录井工具[J]. 石油钻采...
国内测井公司及测井系列
民营测井公司,例如西安的威尔罗根测井公司 此外还有在中国电缆测井作业的 斯伦贝谢公司 威德福公司 在中国从事随钻的还有 斯伦贝谢公司 贝克休斯公司 世界四大测井公司 ...
核磁共振测井简介
核磁共振测井仪器的世界知 名测井服务公司分别为:斯仑贝谢、哈利伯顿和贝克休斯...因此,必须拓展现有 NMR 测井观测信息量,发展二维核磁共振测井方法; 3、随钻核磁...
更多相关标签: