当前位置:首页 >> 数学 >>

【强力推荐】


强力推荐人教版数学高中必修 5 习题

第二章

数列
).

1.{an}是首项 a1=1,公差为 d=3 的等差数列,如果 an=2 005,则序号 n 等于( A.667 B.668 C.669 D.670

2.在各项都为正数的等比数列{an}中,首项 a1=3,前三项和为 21,则

a3+a4+a5=( A.33 B.72 C.84 D.189 ).

).

3.如果 a1,a2,…,a8 为各项都大于零的等差数列,公差 d≠0,则( A.a1a8>a4a5 B.a1a8<a4a5 C.a1+a8<a4+a5

D.a1a8=a4a5

4.已知方程(x2-2x+m)(x2-2x+n)=0 的四个根组成一个首项为 |m-n|等于( A.1 ). B.

1 的等差数列,则 4

3 4

C.

1 2
).

D.

3 8

5.等比数列{an}中,a2=9,a5=243,则{an}的前 4 项和为( A.81 B.120 C.168

D.192

6.若数列{an}是等差数列,首项 a1>0,a2 003+a2 004>0,a2 003·a2 004<0,则使前 n 项和 Sn>0 成立的最大自然数 n 是( ). A.4 005 B.4 006 C.4 007 D.4 008 ).

7.已知等差数列{an}的公差为 2,若 a1,a3,a4 成等比数列, 则 a2=( A.-4 B.-6 C.-8
a5 S 5 = ,则 9 =( a3 S5 9

D. -10 ). D.

8.设 Sn 是等差数列{an}的前 n 项和,若 A.1 B.-1

C.2

1 2
a2 ? a1 的值是( b2

9.已知数列-1,a1,a2,-4 成等差数列,-1,b1,b2,b3,-4 成等比数列,则 A.

).

1 2

B.-

1 2

C.-

1 1 或 2 2

D.

1 4
).

2 10.在等差数列{an}中,an≠0,an-1- an +an+1=0(n≥2),若 S2n-1=38,则 n=(

第 1 页 共 9 页

A.38 二、填空题 11. 设 f(x)= +f(6)的值为
1 2 ? 2
x

B.20

C.10

D.9

, 利用课本中推导等差数列前 n 项和公式的方法, 可求得 f(-5)+f(-4)+…+f(0)+…+f(5) .

12.已知等比数列{an}中, (1)若 a3·a4·a5=8,则 a2·a3·a4·a5·a6= (2)若 a1+a2=324,a3+a4=36,则 a5+a6= (3)若 S4=2,S8=6,则 a17+a18+a19+a20= . . . . .

8 27 13.在 和 之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 2 3
14.在等差数列{an}中,3(a3+a5)+2(a7+a10+a13)=24,则此数列前 13 项之和为 15.在等差数列{an}中,a5=3,a6=-2,则 a4+a5+…+a10= .

16.设平面内有 n 条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用 f(n)表示这 n 条直线交点的个数,则 f(4)= 三、解答题 17.(1)已知数列{an}的前 n 项和 Sn=3n2-2n,求证数列{an}成等差数列. (2)已知 ;当 n>4 时,f(n)= .

1 1 1 b?c c?a a?b , , 成等差数列,求证 , , 也成等差数列. a b c a b c

第 2 页 共 9 页

18.设{an}是公比为 q?的等比数列,且 a1,a3,a2 成等差数列. (1)求 q 的值; (2)设{bn}是以 2 为首项,q 为公差的等差数列,其前 n 项和为 Sn,当 n≥2 时,比较 Sn 与 bn 的大小,并说明理由.

19.数列{an}的前 n 项和记为 Sn,已知 a1=1,an+1= 求证:数列{

n?2 Sn(n=1,2,3…). n

Sn }是等比数列. n

20.已知数列{an}是首项为 a 且公比不等于 1 的等比数列,Sn 为其前 n 项和,a1,2a7,3a4 成等差数列,求证:12S3, S6,S12-S6 成等比数列.

第 3 页 共 9 页

第二章
参考答案
一、选择题 1.C

数列

解析:由题设,代入通项公式 an=a1+(n-1)d,即 2 005=1+3(n-1),∴n=699. 2.C 解析:本题考查等比数列的相关概念,及其有关计算能力. 设等比数列{an}的公比为 q(q>0),由题意得 a1+a2+a3=21, 即 a1(1+q+q2)=21,又 a1=3,∴1+q+q2=7. 解得 q=2 或 q=-3(不合题意,舍去), ∴a3+a4+a5=a1q2(1+q+q2)=3×22×7=84. 3.B. 解析:由 a1+a8=a4+a5,∴排除 C. 又 a1·a8=a1(a1+7d)=a12+7a1d, ∴a4·a5=(a1+3d)(a1+4d)=a12+7a1d +12d2>a1·a8. 4.C 解析: 解法 1:设 a1= 两根之和也为 2, ∴a1+a2+a3+a4=1+6d=4, ∴d= ∴

1 1 1 1 ,a2= +d,a3= +2d,a4= +3d,而方程 x2-2x+m=0 中两根之和为 2,x2-2x+n=0 中 4 4 4 4

1 1 7 3 5 ,a1= ,a4= 是一个方程的两个根,a1= ,a3= 是另一个方程的两个根. 2 4 4 4 4

7 15 , 分别为 m 或 n, 16 16 1 ,故选 C. 2
第 4 页 共 9 页

∴|m-n|=

解法 2:设方程的四个根为 x1,x2,x3,x4,且 x1+x2=x3+x4=2,x1·x2=m,x3·x4=n.

由等差数列的性质:若?+s=p+q,则 a?+as=ap+aq,若设 x1 为第一项,x2 必为第四项,则 x2= 数列为

7 ,于是可得等差 4

1 3 5 7 , , , , 4 4 4 4 7 15 ,n= , 16 16 1 . 2

∴m=

∴|m-n|= 5.B

解析:∵a2=9,a5=243,

a5 243 =q3= =27, a2 9

∴q=3,a1q=9,a1=3, ∴S4= 6.B 解析: 解法 1:由 a2 003+a2 004>0,a2 003·a2 004<0,知 a2 003 和 a2 004 两项中有一正数一负数,又 a1>0,则公差为负数,否 则各项总为正数,故 a2 003>a2 004,即 a2 003>0,a2 004<0. ∴S4 006= ∴S4 007=
4 006 (a1+a4 006 ) 2
3-3 5 240 = =120. 1-3 2



4 006 (a2 003+a2 004 ) 2

>0,

4 007 4 007 ·(a1+a4 007)= ·2a2 004<0, 2 2

故 4 006 为 Sn>0 的最大自然数. 选 B. 解法 2:由 a1>0,a2 003+a2 004>0,a2 003·a2 004<0,同 a2 004<0, ∴S2 003 为 Sn 中的最大值. ∵Sn 是关于 n 的二次函数,如草图所示, ∴2 003 到对称轴的距离比 2 004 到对称轴的距离小, ∴
4 007 在对称轴的右侧. 2
(第 6 题)

解法 1 的分析得 a2 003>0,

根据已知条件及图象的对称性可得 4 006 在图象中右侧 都在其右侧,Sn>0 的最大自然数是 4 006. 7.B
第 5 页 共 9 页

零点 B 的左侧, 4 007, 4 008

解析:∵{an}是等差数列,∴a3=a1+4,a4=a1+6, 又由 a1,a3,a4 成等比数列, ∴(a1+4)2=a1(a1+6),解得 a1=-8, ∴a2=-8+2=-6. 8.A

9(a1 ? a9 ) 9 ? a5 S9 9 5 2 解析:∵ = = = · =1,∴选 A. 5 ( a ? a ) 5 ? a3 S5 5 9 1 5 2
9.A 解析:设 d 和 q 分别为公差和公比,则-4=-1+3d 且-4=(-1)q4, ∴d=-1,q2=2, ∴
a2 ? a1 d 1 = = . 2 b2 ?q 2

10.C
2 2 解析:∵{an}为等差数列,∴ an =an-1+an+1,∴ an =2an,

又 an≠0,∴an=2,{an}为常数数列, 而 a n=

38 S2n ?1 ,即 2n-1= =19, 2 2n ? 1

∴n=10. 二、填空题 11. 3 2 . 解析:∵f(x)=
1 , 2 ? 2
x

1 x 2 1 2x 2 ∴f(1-x)= 1? x = = , 2 ? 2 2 ? 2 ? 2x 2 ? 2x 1 1 1 ? 2x 1? ? 2x ( 2 ? 2x ) 2 2 2 2 ∴f(x)+f(1-x)= + = = = . x x x x 2 2 ?2 2 ?2 2 ?2 2 ?2
1

设 S=f(-5)+f(-4)+…+f(0)+…+f(5)+f(6), 则 S=f(6)+f(5)+…+f(0)+…+f(-4)+f(-5),
第 6 页 共 9 页

∴2S=[f(6)+f(-5)]+[f(5)+f(-4)]+…+[f(-5)+f(6)]=6 2 , ∴S=f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)=3 2 . 12. (1)32; (2)4; (3)32.
2 解析: (1)由 a3·a5= a4 ,得 a4=2,

5 ∴a2·a3·a4·a5·a6= a4 =32.

?a1 ? a2 ? 324 1 (2) ? ? q2 ? , 2 9 ?(a1 ? a2 )q ? 36
∴a5+a6=(a1+a2)q4=4.

? ?S 4=a1+a2+a3+a4=2 (3) ? ? q 4=2 , 4 ? ?S8=a1+a2+? ? ? +a8=S 4+S 4 q
∴a17+a18+a19+a20=S4q16=32. 13.216.

8 27 解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与 , 同号,由等比中项的 2 3
中间数为
8 27 27 8 ? =6,? 插入的三个数之积为 × ×6=216. 3 2 2 3

14.26. 解析:∵a3+a5=2a4,a7+a13=2a10, ∴6(a4+a10)=24,a4+a10=4, ∴S13=

13 (a1+a13 ) 13 (a4+a10 ) 13? 4 = = =26. 2 2 2

15.-49. 解析:∵d=a6-a5=-5, ∴a4+a5+…+a10

7(a4+a10 ) 2 7 (a5-d+a5+5d ) = 2
= =7(a5+2d)
第 7 页 共 9 页

=-49. 16.5,

1 (n+1)(n-2). 2

解析: 同一平面内两条直线若不平行则一定相交, 故每增加一条直线一定与前面已有的每条直线都相交, ∴f(k)=f(k -1)+(k-1). 由 f(3)=2, f(4)=f(3)+3=2+3=5, f(5)=f(4)+4=2+3+4=9, …… f(n)=f(n-1)+(n-1), 相加得 f(n)=2+3+4+…+(n-1)= 三、解答题 17.分析:判定给定数列是否为等差数列关键看是否满足从第 2 项开始每项与其前一项差为常数. 证明: (1)n=1 时,a1=S1=3-2=1, 当 n≥2 时,an=Sn-Sn-1=3n2-2n-[3(n-1)2-2(n-1)]=6n-5, n=1 时,亦满足,∴an=6n-5(n∈N*). 首项 a1=1,an-an-1=6n-5-[6(n-1)-5]=6(常数)(n∈N*), ∴数列{an}成等差数列且 a1=1,公差为 6. (2)∵ ∴

1 (n+1)(n-2). 2

1 1 1 , , 成等差数列, a b c

2 1 1 = + 化简得 2ac=b(a+c). b a c

bc+c 2+a 2+ab b(a+c ) +a 2+c 2 (a+c)2 (a+c)2 b+c a+b a+c + = = = = =2· , b(a+c) ac ac ac a c b 2



b+c c+a a+b , , 也成等差数列. a b c

18.解: (1)由题设 2a3=a1+a2,即 2a1q2=a1+a1q, ∵a1≠0,∴2q2-q-1=0, ∴q=1 或-

1 . 2

第 8 页 共 9 页

n(n-1) n 2+3n = . 2 2 (n- 1)(n+2) 当 n≥2 时,Sn-bn=Sn-1= >0,故 Sn>bn. 2
(2)若 q=1,则 Sn=2n+
- n 2+9 n n(n-1) 1 1 ,则 Sn=2n+ (- )= . 4 2 2 2 (n- 1)(10-n) 当 n≥2 时,Sn-bn=Sn-1= , 4

若 q=-

故对于 n∈N+,当 2≤n≤9 时,Sn>bn;当 n=10 时,Sn=bn;当 n≥11 时,Sn<bn. 19.证明:∵an+1=Sn+1-Sn,an+1=

n+2 Sn, n

∴(n+2)Sn=n(Sn+1-Sn),整理得 nSn+1=2(n+1) Sn, 所以 故{

S n+1 2S = n . n+1 n

Sn }是以 2 为公比的等比数列. n

20.证明:由 a1,2a7,3a4 成等差数列,得 4a7=a1+3a4,即 4 a1q6=a1+3a1q3, 变形得(4q3+1)(q3-1)=0, ∴q3=-

1 或 q3=1(舍). 4

a1 (1 ? q 6 ) S 1 1 ? q3 1? q 由 6 = = = ; 3 12a1 (1 ? q ) 12S 3 16 12 1? q a1 (1 ? q12 ) S12 ? S 6 S 1 1? q = 12 -1= -1=1+q6-1= ; 6 S6 S6 a1 (1 ? q ) 16 1? q S ? S6 S 得 6 = 12 . S6 12S 3

∴12S3,S6,S12-S6 成等比数列.

第 9 页 共 9 页


相关文章:
【强烈推荐】德语语法总结_图文
【强烈推荐】德语语法总结_其它语言学习_外语学习_教育专区。德语语法总结 德语句子的语序初学德语的人往往对德语句子的语序感到迷茫,为什么一会动词在前,一会动词在后...
【精心整理 强力推荐】生活与哲学
生活与哲学策划人:徐 佳铭 【全书基本框架图】 唯物论【世界的物质性原理】 总:世界是物质的世界,世界的真正统一性就在于它的物质性。 ①自然界是物质的 ②...
【强烈推荐】打造约会学话术惯例最强合集
【强烈推荐】打造约会学话术惯例最强合集_交通运输_工程科技_专业资料。【强烈推荐】打造约会学话术惯例最强合集【强烈推荐】发一个自认为很牛 B 的惯例 现在很多大...
新东方强力推荐十大必背范文
新东方强力推荐十大必背范... 7页 免费 【免费】新东方强力推荐十... 7页 免费 新东方强力推荐十大必背范... 2页 免费 新东方强力推荐十大必背范... 4页 ...
【强力推荐(带答案)】高中英语经典单选
【强力推荐(带答案)】高中英语经典单选。300多道单选,有答案讲解。特别有帮助。1. .Many buildings on both sides of the street the next year. A. will bui...
【强烈推荐】德语语法总结
【强烈推荐】德语语法总结_其它语言学习_外语学习_教育专区。德语句子的语序初学德语的人往往对德语句子的语序感到迷茫,为什么一会动词在前,一会动词在后,一会谓语在主...
【强烈推荐】缩句练习150题(含答案)
【强烈推荐】缩句练习150题(含答案)_五年级语文_语文_小学教育_教育专区。缩句练习 一、1、可爱的小红在认真地看着有趣的新书。 2、爸爸在床上听到窗外一阵阵的...
【强烈推荐】傻瓜式建站,最简单建立个人网站
【强烈推荐】傻瓜式建站,最简单建立个人网站_IT/计算机_专业资料。自己写的,从昨天什么都不懂,到今天建立自己的网站,感觉还是很兴奋。。。今日...
【强烈推荐】一年级奥数99道练习题!
【强烈推荐】一年级奥数99道练习题!_学科竞赛_小学教育_教育专区。一年级奥数 99 道练习题供大家分享,谢谢支持!! 1.哥哥有 4 个苹果,姐姐有 3 个苹果,弟弟...
【强力推荐】组织行为学练习题及答案(完整版)
【强力推荐】组织行为学练习题及答案(完整版)_公务员考试_资格考试/认证_教育专区。组织行为学练习题及答案(完整版),个人亲自作答,非常辛苦《...
更多相关标签:
推荐 | 鼎力推荐 | 极力推荐 | 强力推荐 英文 | 强力 | 昵图 | 强力推荐的意思 | 强力推荐 近义词 |