当前位置:首页 >> 信息与通信 >>

IC测试原理解析


IC 测试原理解析(第一部分)
本系列一共四章,下面是第一部分,主要讨论芯片开发和生产过程中的 IC 测试基本原理, 内容覆盖了基本的测试原理,影响测试决策的基本因 素以及 IC 测试中的常用术语。 第一章 数字集成电路测试的基本原理 器件测试的主要目的是保证器件在恶劣的环境条件下能完全实现设计规格书所规定的功能及性能指标。 用来完成这一功能的自动测试设备是由计 算机控

制的。 因此,测试工程师必须对计算机科学编程和操作系统有详细的认识。测试工程师必须清楚了解测试设备与器件之间的接口,懂得 怎样模拟器件将来的电操作环境,这样器件被测试的条件类似于将来应用的环境。 首先有一点必须明确的是,测试成本是一个很重要的因素,关键目的之一就是帮助降低器件的生产成本。甚至在优化的条件下,测试成本有时能 占到器件总体成本的 40%左右。良品率和测试时间必须达到一个平衡, 以取得最好的成本效率。 第一节 不同测试目标的考虑 依照器件开发和制造阶段的不同,采用的工艺技术的不同,测试项目种类的不同以及待测器件的不同,测试技术可以分为很多种类。 器件开发阶段的测试包括: ? ? ? ? 特征分析:保证设计的正确性,决定器件的性能参数; 产品测试:确保器件的规格和功能正确的前提下减少测试时间提高成本效率 可靠性测试:保证器件能在规定的年限之内能正确工作; 来料检查:保证在系统生产过程中所有使用的器件都能满足它本身规格书要求,并能正确工作。

制造阶段的测试包括: ? ? ? 圆片测试:在圆片测试中,要让测试仪管脚与器件尽可能地靠近,保证电缆,测试仪和器件之间的阻抗匹配,以便于时序调整和矫正。因而

探针卡的阻抗匹配和延时问题必须加以考虑。 封装测试:器件插座和测试头之间的电线引起的电感是芯片载体及封装测试的一个首要的考虑因素。 特征分析测试,包括门临界电压、多域临界电压、旁路电容、金属场临界电压、多层间电阻、金属多点接触电阻、扩散层电阻、 接触电阻以

及 FET 寄生漏电等参数测试。 通常的工艺种类包括: ? ? ? ? ? TTL ECL CMOS NMOS Others

通常的测试项目种类: ? ? ? 功能测试:真值表,算法向量生成。 直流参数测试:开路/短路测试,输出驱动电流测试,漏电电源测试,电源电流测试,转换电平测试等。 交流参数测试:传输延迟测试,建立保持时间测试,功能速度测试,存取时间测试,刷新/等待时间测试,上升/下降时间测试 。

第二节 直流参数测试 直流测试是基于欧姆定律的用来确定器件电参数的稳态测试方法。比如,漏电流测试就是在输入管脚施加电压,这使输入管脚与电源或地之间的 电阻上有电流通过,然后测量其该管脚电流的测试。输出驱动电流测试就是在输出管脚上施加一定电流,然后测量该管脚与地或电源之间的电压 差。

通常的 DC 测试包括 : ? 接触测试(短路-开路):这项测试保证测试接口与器件正常连接。接触测试通过测量输入输出管脚上保护二极管的自然压降来确定连接性。

二级管上如果施加一个适当的正向偏置电流,二级管的压降将是 0.7V 左右,因此接触测试就可以由以下步骤来完成: 1.所有管脚设为 0V, 2.待测管脚上施加正向偏置电流‖I‖, 3.测量由‖I‖引起的电压, 4.如果该电压小于 0.1V,说明管脚短路, 5.如果电压大于 1.0V,说明该管脚开路, 6.如果电压在 0.1V 和 1.0V 之间,说明该管脚正常连接。 ? 漏电(IIL,IIH,IOZ):理想条件下,可以认为输入及三态输出管脚和地之间是开路的。但实际情况,它们之间为高电阻状态。它们之间的最

大的电流就称为漏电流,或分别称为输入漏电流和输出三态漏电流。漏电流一般是由于器件内部和输入管脚之间的绝缘氧化膜在生产过程中太薄 引起的,形成一种类似于短路的情形,导致电流通过。 ? ? 三态输出漏电 IOZ 是当管脚状态为输出高阻状态时,在输出管脚使用 VCC(VDD)或 GND(VSS)驱动时测量得到的电流。三态输出漏电

流的测试和输入漏电测试类似,不同的是待测器件必须被设置为三态输出状态 转换电平(VIL,VIH)。转换电平测量用来决定器件工作时 VIL 和 VIH 的实际值。(VIL 是器件输入管脚从高变换到低状态时所需的最大电压

值, 相反, VIH 是输入管脚从低变换到高的时候所需的最小电压值)。 这些参数通常是通过反复运行常用的功能测试, 同时升高 (VIL) 或降低 (VIH) 输入电压值来决定的。那个导致功能测试失效的临界电压值就是转换电平。这一参数加上保险量就是 VIL 或 VIH 规格。保险量代表了器件的抗 噪声能力。 ? ? 输出驱动电流(VOL,VOH,IOL,IOH)。输出驱动电流测试保证器件能在一定的电流负载下保持预定的输出电平。VOL 和 VOH 规格用来保

证器件在器件允许的噪声条件下所能驱动的多个器件输入管脚的能力。 电源消耗(ICC,IDD,IEE)。该项测试决定器件的电源消耗规格,也就是电源管脚在规定的电压条件下的最大电流消耗。电源消耗测试可

分为静态电源消耗测试和动态电源消耗测试。静态电源消耗测试决定器件在空闲状态下时最大的电源消耗,而动态电源消耗测试决定器件工作时 的最大电源消耗。 第三节 交流参数测试 交流参数测试测量器件晶体管转换状态时的时序关系。交流测试的目的是保证器件在正确的时间发生状态转换。输入端输入指定的输入边沿,特 定时间后在输出端检测预期的状态转换。 常用的交流测试有传输延迟测试,建立和保持时间测试,以及频率测试等。 传输延迟测试是指在输入端产生一个状态(边沿)转换和导致相应的输出端的状态(边沿)转换之间的延迟时间。该时间从输入端的某一特定电 压开始到输出端的某一特定电压结束。 一些更严格的时序测试还会包括以下的这些项目: 三态转换时间测试TLZ,THZ: 从输出使能关闭到输出三态完成的转换时间。 TZL,TZH: 从输出使能开始到输出有效数据的转换时间。 存储器读取时间- 从内存单元读取数据所需的时间。测试读取时间的步骤一般如下所示:

1.往单元 A 写入数据’0’, 2.往单元 B 写入数据’1’, 3.保持 READ 为使能状态并读取单元 A 的值, 4.地址转换到单元 B, 5.转换时间就是从地址转换开始到数据变换之间的时间。

写入恢复时间 –在写操作之后的到能读取某一内存单元所必须等待的时间。 暂停时间- 内存单元所能保持它们状态的时间,本质上就是测量内存数据的保持时间。 刷新时间 – 刷新内存的最大允许时间 建立时间 - 输入数据转换必须提前锁定输入时钟的时间 。 保持时间 - 在锁定输入时钟之后输入数据必须保持的时间。 频率- 通过反复运行功能测试,同时改变测试周期,来测试器件运行的速度。周期和频率通常通过二进制搜索的办法来进行变化。频率测试的 目的是找到器件所能运行的最快速度。 上面讨论了数字集成电路测试的一些基本目的和原理,同时也定义了测试上的一些关键术语,在接下来的章节里,我们将讨论怎么把这些基本原 理应用到实际的 IC 测试中去。

IC 测试原理解析(第二部分)
芯片测试原理讨论在芯片开发和生产过程中芯片测试的基本原理,一共分为四章,下面将要介绍的是第二章。我们在第一章介绍了芯片的基本测试原理, 描述了影响芯片测试方案选择的基本因素,定义了芯片测试过程中的常用术语。本文将讨论怎么把这些原理应用到存储器和逻辑芯片的测试上。接下来 的第三章将介绍混合信号芯片的测试,第四章会介绍射频/无线芯片的测试。

存储器和逻辑芯片的测试

存储器芯片测试介绍

存储器芯片是在特定条件下用来存储数字信息的芯片。存储的信息可以是操作代码,数据文件或者是二者的结合等。根据特性的不同,存储器可以分为 以下几类,如表 1 所示:

存储器的种类与特性

存储器术语的定义

在讨论存储器芯片测试之前,有必要先定义一些相关的术语。

写入恢复时间(Write Recovery Time):一个存储单元在写入操作之后和正确读取之前中间必须等待的时间。

保持时间(Hold Time):输入数据电平在锁存时钟之后必须保持的时间间隔。

Pause Test:存储器内容保持时间的测试。

刷新时间(Refresh Time):存储器刷新的最大时间间隔。

建立时间(Setup Time):输入数据电平在锁存时钟之前必须稳定保持的时间间隔。

上升和下降时间(Rise and Fall Times):功能速度测试是通过重复地进行功能测试,同时改变芯片测试的周期或频率来完成的。测试的周期通常使用二进制 搜索的办法来进行改变。这些测试能够测出芯片的最快运行速度。

写入恢复(Write Recovery):一个存储单元在写入操作之后和下一个存储单元能正确读取之前中间必须等待的时间。

读取时间(Access time):通常是指在读使能,片选信号或地址改变到输出端输出新数据的所需的最小时间。读取时间取决于存储器读取时的流程。

存储器芯片测试中的功能测试

存储器芯片必须经过许多必要的测试以保证其功能正确。这些测试主要用来确保芯片不包含一下类型的错误:

存储单元短路:存储单元与电源或者地段路

存储单元开路:存储单元在写入时状态不能改变相邻单元短路:根据不同的短路状态,相邻的单元会被写入相同或相反的数据地址

开路或短路:这种错误引起一个存储单元对应多个地址或者多个地址对应一个存储单元。这种错误不容易被检测,因为我们一次只能检查输入地址所对 应的输出响应,很难确定是哪一个物理地址被真正读取。

存储单元干扰:它是指在写入或者读取一个存储单元的时候可能会引起它周围或者相邻的存储单元状态的改变,也就是状态被干扰了。

存储器芯片测试时用于错误检测的测试向量

测试向量是施加给存储器芯片的一系列的功能,即不同的读和写等的功能组合。它主要用于测试芯片的功能错误。常用的存储器测试向量如下所示,分 别介绍一下他们的执行方式以及测试目的.

全”0”和全”1”向量: 4n 行向量

执行方式:对所有单元写‖1‖再读取验证所有单元。对所有单元写‖0‖再读取验证所有单元。

目的:检查存储单元短路或者开路错误。也能检查相邻单元短路的问题。

棋盘格(Checkerboard)向量:4n 行向量

执行方式:先运行 0-1 棋盘格向量,也就是第一个单元写 1,第二个单元写 0,第三个单元再写 1,依此类推,直到最后一个单元,接下来再读取并验证 所有单元。再运行一个 1-0 棋盘格向量,就是对所有单元写入跟 0-1 棋盘格完全相反的数据,再读取并验证所有单元。

目的:这是功能测试,地址解码和单元干扰的一个最基本最简单的测试向量。它还能检查连续地址错误或者干扰错误,也通常用它作为时间测量时的向 量。

Patterns Marching 向量:5n 行向量

执行方式:先对所有单元写 0.读取第一个单元,再对第一个单元写 1。再读取第二个单元,再对第二个单元写 1,依此类推,直到最后一个单元。最后再 重复上述操作,只是写入数据相反。

目的:这是功能测试,地址解码和单元干扰的一个最基本最简单的测试向量。它还能检查连续地址错误或者干扰错误,也通常用它作为时间测量时的向 量。

Walking 向量:2n^2 行向量

执行方式:先对所有单元写 0,再读取所有单元。接下来对第一个单元写 1,读取所有单元,读完之后把第一个单元写回 0。再对第二个单元写 1,读取所 有单元,读完之后把第二个单元写回 0。依次类推,重复到最后一个单元。等上述操作完成之后,再重复上述操作,只不过写入的数据相反。

目的:检查所有的地址解码错误。它的缺点是它的运行时间太长。假设读写周期为 500ns,对一个 4K 的 RAM 进行 wakling 向量测试就需要 16 秒的测试 时间。如果知道存储器的结构,我们可以只进行行或者列的 walking 以减少测试时间。

Galloping 写入恢复向量:12^2n 行向量

执行方式:对所有单元写 0。再对第一个单元写 1(基本单元),读取第二个单元, 然后返回来读取第一个单元。再对第二个单元写 0,读第二个单元。 接下来再在其它所有单元和基本单元之间重复这个操作。等第一个单元作为基本单元的操作完成之后,再把第二个单元作为基本单元,再作同样的操作。 依此类推,直到所有单元都被当过基本单元。最后,再重复上述过程,但写入数据相反。

目的:这是功能测试,地址解码测试和干扰测试一个极好的向量。如果选择适当的时序,它还可以很好地用于写入恢复测试。同时它也能很好地用于读 取时间测试。

其他的测试向量都类似于以上这些向量,都基于相同的核心理念。

动态随机读取存储器(DRAM)

动态随机读取存储器(DRAM)的测试有以下的一些特殊要求:

1.行地址和列地址在相同的地址线上输入(行列地址复用)。他们分别通过 RAS 和 CAS 信号来锁存。

2.需要在固定的时间间隔内对芯片进行刷新。

3.DRAM 能够进行页操作。因此需要保持行地址不变而改变列地址(或者相反)。

逻辑测试介绍

逻辑芯片功能测试用于保证被测器件能够正确完成其预期的功能。为了达到这个目的,必须先创建测试向量或者真值表,才能进检测代测器件的错误。 一个真值表检测错误的能力有一个统一的标准,被称作故障覆盖率。测试向量与测试时序结合在一起组成了逻辑功能测试的核心。

测试向量

测试向量—也称作测试图形或者真值表—由输入和输出状态组成,代表被测器件的逻辑功能。输入和输出状态是由字符来表示的,通常 1/0 用来表示输入 状态,L/H/Z 用来表示输出状态,X 用来表示没有输入也不比较输出的状态。事实上可以用任何一套字符来表示真值表,只要测试系统能够正确解释和执 行每个字符相应的功能。

测试向量是存储在向量存储器里面的,每行单独的向量代表一个单一测试周期的―原始―数据。从向量存储器里输入的数据与时序,波形格式以及电压数 据结合在一起,通过 pin electronic 电路施加给待测器件。待测器件的输出通过 pin electronic 上的比较电路在适当的采样时间与存储在向量存储器里的数 据进行比较。这种测试被称作存储响应。

除了待测器件的输入输出数据,测试向量还可能包含测试系统的一些运作指令。比如说,要包含时序信息等,因为时序或者波形格式等可能需要在周期 之间实时切换。输入驱动器可能需要被打开或者关闭,输出比较器也可能需要选择性地在周期之间开关。许多测试系统还支持像跳转,循环,向量重复, 子程序等微操作指令。不同的测试仪,其测试仪指令的表示方式可能会不一样,这也是当把测试程序从一个测试平台转移到另一个测试平台时需要做向 量转换的原因之一。

比较复杂的芯片,其测试向量一般是由芯片设计过程中的仿真数据提取而来。仿真数据需要重新整理以满足目标测试系统的格式,同时还需要做一些处 理以保证正确的运行。通常来说测试向量并不是由上百万行的独立向量简单构成的。测试向量或者仿真数据可以由设计工程师,测试工程师或者验证工 程师来完成,但是要保证成功的向量生成,都必须对芯片本身和测试系统有非常全面地了解。

测试资源的消耗

当开发一个功能测试时,待测器件各方面的性能与功能都要考虑到。以下这些参数都要仔细地进行测试或设置:

? ? ? ? ? ? ? ? ?

VDD Min/Max (待测器件电源电压) VIL/VIH (输入电压) VOL/VOH (输出电压) IOL/IOH (输出电流负载) VREF (IOL/IOH 转换电平) 测试频率(测试使用的周期) 输入信号时序(时钟/建立时间/保持时间/控制) 输入信号波形格式 输出时序(在周期内何时对输出进行采样)

?

向量顺序(向量文件内的 start/stop 位置)

上述的这些资源说明了功能测试会占用测试系统的大部分资源。功能测试主要由两大块组成,一是测试向量文件,另外一块是包含测试指令的主测试程 序。测试向量代表了测试待测器件所需的输入输出逻辑状态。主测试程序包含了保证测试仪硬件能产生必要的电压,波形和时序等所必需的信息。(如 图所示)

功能测试

当功能测试执行的时候,测试系统把输入波形施加给待测器件,并一个周期一个周期,一个管脚一个管脚地监控输出数据。如果有任何的输出数据不符 合预期的逻辑状态,电压或者时序,该测试结果被记录为错误。

到现在我们讨论了相对简单的存储器和数字芯片测试的基本测试技术。在此文接下来的两章里,我们将讨论测试更为复杂的混合信号和射频/无线芯片的 独特要求。

IC 测试原理解析(第三部分)
芯片测试原理讨论在芯片开发和生产过程中芯片测试的基本原理,一共分为四章,下面将要介绍的是第三章。我们在第一章介绍了芯片测试的 基本原理;第二章讨论了怎么把这些基本原理应用到存储器和逻辑芯片的测试上;本文主要介绍混合信号芯片的测试;接下来的第四章将会介 绍射频/无线芯片的测试。 第三章 混合信号芯片测试基础 基于 DSP 的测试技术 利用基于数字信号处理(DSP)的测试技术来测试混合信号芯片与传统的测试技术相比有许多优势。这些优势包括: ? ? ? 由于能并行地进行参数测试,所以能减少测试时间; 由于能把各个频率的信号分量区分开来(也就是能把噪声和失真从测试频率或者其它频率分量中分离出来),所以能增加测试的精度和可重复

性。 能使用很多数据处理函数,比如说求平均数等,这对混合信号测试非常有用

采样和重建 采样用于把信号从连续信号(模拟信号)转换到离散信号(数字信号),重建用于实现相反的过程。自动测试设备(ATE)依靠采样和重建给待测芯片 (DUT)施加激励信号并测量它们的响应。测试中包含了数学上的和物理上的采样和重建。图 1 中说明了在测试一个音频接口芯片时用到的各种 采样和重建方法。

采样和重建在混合信号测试中的应用

纯数学理论上,如果满足某些条件,连续信号在采样之后可以通过重建完全恢复到原始信号,而没有任何信号本质上的损失。不幸的是,现实 世界中总不能如此完美,实际的连续信号和离散信号之间的转换总会有信号的损失。 我们周围物理世界上的许多信号,比如说声波、光束、温度、压力在自然界都是模拟的信号。现今基于信号处理的电子系统都必须先把这些模 拟信号转换为能与数字存储,数字传输和数学处理兼容的离散数字信号。接下来可以把这些离散数字信号存储在计算机阵列之中用数字信号处 理函数进行必要的数学处理。 重建是采样的反过程。 此过程中, 被采样的波形(脉冲数字信号)通过一个数模转换器(DAC)和反镜象滤波器一样的硬件电路转换为连续信号波形。 重建会在各个采样点之间填补上丢失的波形。DAC 和滤波器的组合就是一个重建的过程,可以用图 2 所示的冲击响应 p(t)来表示。

由一个数据序列重建连续时间波形

混合信号测试介绍 最常见的混合信号芯片有:模拟开关,它的晶体管电阻随着数字信号变化;可编程增益放大器(PGAs),能用数字信号调节输入信号的放大倍数; 数模转换电路(D/As or DACs);模数转换电路(A/Ds or ADCs);锁相环电路(PLLs),常用于生成高频基准时钟或者从异步数据流中恢复同步时钟。 终端应用和测试考虑 许多混合信号的应用,比如说移动电话,硬盘驱动器,调制解调器, 马达控制器以及多媒体音频/视频产品等,都使用了放大器,滤波器,开 关,数模/模数转换以及其它专用模拟和数字电路等多种混合信号电路。尽管测试器件内部每个独立电路非常重要,同样系统级的测试也非常重 要。系统级测试保证电路在整体上能满足终端应用的要求。为了测试大规模的混合信号电路,我们必须对该电路的终端应用有基本的了解。图 3 所示是数字移动电话的模块图,此系统拥有许多复杂的混合信号部件,是混合信号应用很好的一个例子。

复杂混合信号应用的简单模块图:数字移动电话系统

基本的混合信号测试 直流参数测试 接触性测试(短路开路测试)用于保证测试仪到芯片接口板的所有电性连接正常。 漏电流测试是指测试模拟或数字芯片高阻输入管脚电流,或者是把输出管脚设置为高阻状态,再测量输出管脚上的电流。尽管芯片不同,漏电 流大小会不同,但在通常情况下,漏电流应该小于 1uA。漏电流主要用于检测以下几种缺陷:芯片内部不同层之间的短路或者漏电,DC 偏差 或者其他参数偏移等。这些缺陷最终会导致芯片不能正常工作。过大的漏电流也会引起器件的早期失效使终端系统故障。 通常会进行两次漏电 流测试,第一次是给待测管脚施加高电压(和电源电压相近的电压), 另一次是给待测管脚施加接近零电压(或芯片负电源电压)。 这两种测试分 别称作高电平漏电流测试(IIH)和低电平漏电流测试(IIL)。 电源电流测试 测试芯片每个电源管脚消耗的电流是发现芯片是否存在灾难性缺陷的最快方法之一。每个电源管脚被设置为预定的电压,接下来用自动测试设 备的测量单元测量这些电源管脚上的电流。这些测试一般在测试程序的开始时进行,以快速有效地选出那些完全失效的芯片。电源测试也用于 保证芯片的功耗能满足终端应用的要求。

DAC 和 ADC 测试规格 DAC 和 ADC 芯片必须执行一些特定的静态和动态参数检测。下一面一一介绍这些指标: DAC 静态参数指标 ? ? ? ? ? ? ? ? ? 分辨率(Resolution)是指 DAC 输出端所能变化的最小值。 满量程范围(FSR), 是指 DAC 输出信号幅度的最大范围,不同的 DAC 有不同的满量程范围。该范围可以是正和/或负电流,正和/或负电压。 最小有效位(LSB)大小是指输入代码变化最小数值时输出端模拟量的变化。 差分非线性度(DNL)用于测量小信号非线性误差。计算方法:本输入代码和其前一输入代码之间模拟量的变化减去 1 个最小有效位(LSB)大

小。 单调性是指如果增加输入代码其输出模拟量也会保持相应的增加或反之的特性。该特性对使用在反馈环电路之中的 DAC 非常重要,它能保

证反馈环不会被死锁在两个输入代码之间。 整体非线性度(INL)是指对一个输入代码所有非线性度的累计。这一参数可以通过测量该代码相应的输出模拟量与起终点间直线之间的偏差

来完成。 偏差(offset)是指 DAC 的输入代码为 0 时 DAC 输出模拟量与理想输出的偏差。 增益误差(gain error)是指 DAC 的输入代码为最大时 DAC 实际输出模拟量与理想输出的偏差。 精度(accuracy)是指 DAC 的输出与理想情况的偏差,包括了所有以上的这些错误,有时用百分比来表示。一般情况不直接测量该参数,通过

静态错误的计算而得出其结果。 ADC 静态参数规格 ? ? ? ? ? ? ? ? 满量程范围(FSR)的定义与 DAC 的一样。 偏差(offset error)是指保证输出代码为 0 时的理想输入模拟量与实际输入模拟量的偏差。计算方法:输出第一个代码发生变化时 ADC 的实际

输入模拟值减去 1/2 个最小有效位(LSB)大小再减去理想的 0 代码输入模拟值。 ADC 的增益误差(gain error)是指满量程输入时输出代码的误差。 计算方法: 满量程输出代码加上 1 1/2 最小有效位(LSB)时输入值与满量程输

出代码时输入之间的差值,再加上偏差(offset error)。 最小有效位(LSB)大小是通过测量最小的和最大的转换点后计算得到的。理想情况下,模拟输入变化一个 LSB 值,将引起输出端变化一个代

码。 差分非线性度(DNL)用于测量小信号非线性误差。计算方法:两个转换点之间的模拟输入量之差减去一个最小有效位(LSB)值。 无丢码(no missing code)是指该 ADC 在实际情况下能产生多少位输出。 一个 14 位的 ADC 可能被说明为‖无丢码位数为 12(no missing codes to

12 bits)‖,这就表明此 ADC 在输入变化时,其输出端的低两位代码不会发生变化,而只是其它的高 12 位代码能发生变化。 整体非线性度(INL)是指一个指定代码中点实际输入和理想传输函数线上输入之间的偏差。 ADC 的测量精度概念与 DAC 的相似。

DAC 动态参数指标 ? ? ? 信噪比(SNR)是通过给 DAC 施加一个满量程的正弦波数字代码再分析其输出波形频率特性而得到的。DAC 的输出经过滤波滤除基波分量以

及所有谐波分量后剩下部分就是噪声。SNR 就是基波分量与所有噪声分量之和的比值。 信号与噪声谐波比(SNDR 或 SINAD)跟 SNR 的计算方法一样,只是谐波分量也计算在噪声内。 全谐波失真(THD)和 SINAD 相似,但它只包含谐波分量不包括噪声。在这个比值计算中,基波分量是分母而不是分子。DAC 的输入为一个

正弦波的数字代码;其输出是阶梯状的正弦波输出,需要通过一个滤波器进行平滑处理。经滤波后的输出波形再在频域进行分析,寻找与基波 频率相关的谐波分量。 ? ? ? 互调失真(IM)用于测试由两种频率互调而产生的非谐波分量的失真。这种失真是由待测芯片的非线性度而引起的。测试该参数时:先给待测

DAC 输入两个频率分量的波形数字代码,再计算输出波形中的两个频率之和及之差信号分量。 最大转换速率(maximum conversion rates)是芯片规格书指标之一。当 DAC 的输入变化时,其输出端需要一段时间才能得到稳定的相应输出

值。最长的稳定时间就是最大转换速率。 建立时间(settling)是指输出值达到并稳定在预定值的+-1/2LSB 范围或某些别的规定范围之内所需的时间。

ADC 动态参数指标

? ? ? ? ? ?

信噪比(SNR)的概念与运算放大器的概念一样。和 THD 测量类似,给 ADC 输入端加一个纯正弦波,通过 ADC 芯片的采样之后,输出一组

数字代码。再用数字信号处理算法提取其中的 SNR 信息。SNR 的单位是 dB。 总谐波失真(THD)的概念与运算放大器的概念一样,但他们的测试方法不一样。给 ADC 输入一个纯正弦波,输出是一组由正弦波采样而来

的数字代码,我们再把这些代码与理想正弦波特性进行比较。使用数字信号处理算法提取其中的总谐波失真信息。单位是 dB。 信号与噪声谐波比(SNDR 或 SINAD)是基波分量与噪声及谐波失真分量总和的比值,单位是 dB。 互调失真(IM)用于测试由两种频率互调而产生的非谐波分量的失真。这种失真是由待测芯片的非线性度而引起的。测试该参数时:先给待测

ADC 输入两个频率分量模拟波形,再计算输出数字代码中的两个频率之和及之差信号分量。 动态范围(Dynamic range)是指 ADC 输入信号幅度的最大值与最小值的比值,单位是 dB. 理想 ADC 的动态范围是 20log(2bits-1)。 无杂波动态范围(SFDR)是指基波或载玻分量与其它非基波和载波的最大杂波的频率分量(可以是谐波或失真波)的比值,单位是 dB。

到此为止,我们讨论了相对简单的存储器和逻辑芯片的测试技术,也介绍了复杂混合信号芯片的特殊测试要求。在接下来的最后一章,我们将 介绍射频/无线芯片的测试。 参考文献

IC 测试原理解析(第四部分—射频/无线芯片测试基础)
芯片测试原理讨论在芯片开发和生产过程中芯片测试的基本原理,一共分为四章,下面将要介绍的是最后一章。第一章介绍了芯片测试的基本原理,第 二章介绍了这些基本原理在存储器和逻辑芯片的测试中的应用,第三章介绍了混合信号芯片的测试。本文将介绍射频/无线芯片的测试。

射频/无线系统会同时包含一个发射器和接收器分别用于发送和接收信号。我们先介绍发射器的基本测试,接下来再介绍接收器的基本测试。

发射器测试基础

如图 1 所示,数字通信系统发射器由以下几个部分构成:

* CODEC(编码/解码器)

* 符号编码

* 基带滤波器(FIR)

* IQ 调制

* 上变频器(Upconverter)

* 功率放大器

CODEC 使用数字信号处理方法(DSP)来编码声音信号,以进行数据压缩。它还完成其它一些功能,包括卷积编码和交织编码。卷积编码复制每个输入位, 用这些冗余位来进行错误校验并增加了编码增益。交织编码能让码位错误分布比较均匀,从而使得错误校验的效率更高。

符号编码把数据和信息转化为 I/Q 信号,并把符号定义成某个特定的调制格式。基带滤波和调制整形滤波器通过修整 I/Q 调制信号的陡峭边沿来提高带宽 的使用效率。

IQ 调制器使得 I/Q 信号相互正交(积分意义上),因此它们之间不会相互干扰。IQ 调制器的输出为是 IQ 信号的组合,就是一个单一的中频信号。该中频信 号经过上变频器转换为射频信号后,再通过放大后进行发射。

Figure 1. 通用数字通信系统发射器的简单模块图

先进的数字信号处理和专用应用芯片技术提高了数字系统的集成度。现在一块单一的芯片就集成了从 ADC 转换到中频调制输出的大部分功能。因此,模 块级和芯片级的射频测试点会减少很多,发射器系统级和天线端的测试和故障分析就变得更加重要。

发射器的主要测试内容

信道内测试

* 信道内测试采用时分复用或者码分复用的方法来测试无线数字电路。复用指的是频率或者空间上的复用等。在时分多址(TDMA)技术中,一个信道可以 定义为在一系列重复出现的帧里面特定的频段和时隙,而在码分多址(CDMA)技术中,信道定义为特定的码段和频段。信道内和信道外这两个术语指的是 我们所感兴趣的频段(频率信道),而不是指频率带宽内信道的时隙或者码段。

* 发射器信道带宽是最先进行的测试,它决定了发射器发射信号的频谱特性。通过频谱的形状和特性可以发现设计上的许多错误,并能大概推算出系统 符号速率的错误率。

* 载波频率测试用于测试可能引起相邻频段信道干扰或影响接收器载波恢复的频率误差。在大多数调制方式中,载波频率应处于频谱的中心。可以通过 计算 3dB 带宽来判断中心频率。

* 信道功率测试用于测试有用信号在频率带宽内的平均能量。它通常定义为有用信号能量在信号频率带宽内的平均值,实际的测量方法随着不同的标准 会有所不同。无线系统必须保证每个环节消耗的能量最少,这样的目的主要有两个:一是可以减少系统的整体干扰,二是能延长便携系统电池的使用寿 命。因此,必须严格地控制输出功率。在 CDMA 系统中,为了达到最大的容量,系统总的干扰容限也严格限制了每个单个移动单元的功率。精确发射功 率控制对系统的容量,覆盖范围和信号质量至关重要.

* 占用带宽跟信道功率密切相关,定义为给定总调制信号功率的百分比所覆盖多少频谱。

* 时间测试常用于 TDMA 系统中的突发信号测试。这些测试主要用来评估载波包络是否能满足预期的要求,它们包括了突发信号宽度,上升时间,下降 时间、开启时间、关闭时间、峰值功率、发射功率、关闭功率以及占空比等。时间测试可以保证相邻频率信道之间的干扰以及信号开启或者关闭的时隙 切换时的干扰最小。

* 调制品质的测试通常涉及到发射信号的精确解调并与理想的数学计算出来的发射信号或参考信号进行比较。实际的测量随着不同的调制方式和不同的 标准会有不同的方法。

* 误差矢量幅度(EVM)是应用最广泛的数字通信系统调制品质参数,它采样发射器的输出端的输出信号,获得实际信号的轨迹。通常把输出信号解调后 得到一个参考信号。矢量误差是指某个时间理想的参考信号与实际所测的信号的差别,是一个包含幅度分量和相位分量的复数。通常,EVM 会采用最大

的符号幅度分量或者平均符号功率的平方根。

* I/Q 偏置(固有偏置 origin offsets)是由 I/Q 信号的直流偏置引起的,可能会导致载波反馈。

* 相位和频率误差测试用于等幅调制方式。通过采样发射器的输出信号并捕获实际的相位轨迹,解调后得到一个理想的参考相位轨迹。相位误差是通过 比较实际信号和理想参考信号而得到的,并以有效值和峰值的形式表示。大的相位误差说明发射器基带或者输出放大器有问题,导致信号灵敏度的下降。 频率误差是指载波频率的误差。一个稳定的小频率误差说明正在使用的载波可能有些问题。不稳定的频率误差可能是由以下这些原因引起的:本地振荡 器的不稳定,使用了不适当的滤波器,放大器的幅度调制相位调制转换有问题,或是所使用发射器模拟频率调制器的调制指数有问题,

信道外测试

* 信道外测试是指对那些在系统频率以外频段的测量。

* 信道外测试是对系统频段内的失真或者干扰进行采样,而不是对传输频率本身进行测试

* 相邻信道功率比(ACPR)测试保证发送器不受相邻或者间隔通道的干扰。ACPR 就是相邻信道平均功率与发射信道平均功率的比值。通常是在间隔多个 信道的信道之间进行测量(与相邻信道或间隔信道之间)。当进行 ACPR 测试的时候,要考虑到发射信号的统计特性非常重要,因为即使对于同一发射器来 说,不同的信号统计会导致不同的 ACPR 测试结果。对于不同的标准,该测试通常会具有不同的名字和定义。

* 杂波信号是由发射器内不同的信号组合而引起的。在系统频带内这种信号的幅度必须要小于标准所规定的水平,以保证它对其它通信系统的干扰最小。

* 谐波是由发送器的非线性而引起的信号失真,这些信号的频率都是载波频率的整数倍。信道外杂波和谐波的测试用于保证本信道对其它通信系统的干 扰最小。

接收器基本测试

接收器的功能基本上是发送器的反向过程,因而它们带来的测试挑战也非常相似。接收器必须在有潜在干扰的条件下成功地捕获 RF 信号,因此,必须有 一个前端选择滤波器来滤除或减弱由天线接受到的系统频段以外的信号。低噪声放大器(LNA)可以放大目标信号的幅度,但同时也会保证尽可能少地增加 噪声幅度,下变频器通过与本振信号混频把 RF 信号转换为频率较低的中频信号。混频器的输出信号再通过中频滤波器削弱由混频器或相邻通道产生的无 用的频率分量。

数字接收器(图 2)可以用 I/Q 解调器或者采样中频 IF 来实现。I/Q 解调是由模拟硬件来实现的,在数字射频接收器的设计中比较常见。尽管这种方法很受 欢迎,但它有一个潜在的问题:I/Q 路径上的增益会不太一致,而且相对的相位偏差也很大(大于 90 度),进而会导致图像抑制的问题。因此,I/Q 解调的 方式主要用于单通道基站。

Figure 2. 典型的数字通信接收器

接收器的主要测试内容

* 信道内测试用来测试接收器在一定的允许误码率的情况下能接受的最小的信号幅度,又称作灵敏度。接收器能正确捕获低幅度输入信号的能力就是该 接收器的灵敏度。

* 比特误码率和桢误码率是在数字接收器里面的地位就跟模拟接收器里面的信号与噪声谐波比(SINAD)一样,是衡量数字接收器最重要的性能指标,同时 也是灵敏度的衡量方式。当采用一位数据序列进行调制时,可接受的灵敏度是指在指定误码率的条件下最小接收信号的幅度。测量该参数时需要通过衰减 已知的电缆分别把信号源施加到接收器的天线端,以及把接收器的输出端连接到比特误码率检测设备上。测试时,如果不知道大概的灵敏度,那就最先 把信号的幅度设置到通常的水平(比如-90dBm),接下来递减幅度,直到比特误码率达到指定值。此时,信号的功率值减去电缆的损耗就是灵敏度。

* 同道抑制能力测试与灵敏度测试相似。测试时,在相同 RF 信道上加上干扰信号后检测接收信号的扭曲水平。接收器能保持对所需信号的灵敏度同时抑 制干扰信号的能力就是同道抑制能力。

* 信道外或阻塞测试用于验证当有信道外信号出现时接收器是否能正常工作以及在此条件下接收器被干扰后所产生的杂波响应。通常信道外测试包括:

- 杂波抑制能力,它与同道抑制相似,但是干扰信号是所有频段的干扰信号而不仅限于同信道内的。

- 互调抑制能力(intermodulation immunity)用于测试当接收器的输入包含多个频率分量时所产生的失真信号。

- 相邻信道抑制能力用于测试当相邻信道具有强信号时接收器的接受能力。

检测杂波抑制能力

杂散响应或者杂波是由接收器内部或接收器与外部信号的共同作用产生的。这两种杂波信号都需要被检测。

在进行杂波信号检测时,可以用一个负载代替接收器的天线,这样可以保证接收器的输入信号没有干扰信号,接下来把接收器的输出连接到频谱分析仪。 这样,系统内部产生的毛刺都会在频谱分析仪上出现。系统内部产生的杂波一般源于接收器电源的谐波,系统时钟或者本振信号。

杂散响应抑制能力用于测试接收器抑制在输出端由杂散响应产生的无用信号的能力。在进行此项测试之前,我们必须找出所有的内部产生的杂波源,并确 保它们没有超出规定范围。接下来,我们再给所需射频信道施加一个在灵敏度范围以上的调制测试信号,同时用第二个信号发生器提供一个干扰信号。 改变干扰信号的频率,观察和验证接收器的杂波抑制能力。

检测互调抑制能力

互调影响是指在输入信号包含多个频率分量时由接收器的非线性度而产生一些无用信号。一般用两个频率分量的输入信号来测试接收器的互调特性。我 们需要设置干扰信号让三阶互调分量落在接收器的通带之中。干扰信号的能量与其它信号都相等并设定在指定的值,接下来再检测有用信号的比特误码 率。

测量相邻通道和间隔通道的选择性

相邻和间隔通道的选择性指接收器接受本信道有用信号并抵制相邻通道(通常隔一个通道)或间隔通道(通常指相隔两个通道)较强信号干扰的能力。在一 些通信应用中,通道比较窄或者间隔通道的能量难于控制,比如说移动无线信号等,这些应用中,上述的测试就非常重要。进行这些测试时,通过信号 发生器给待测信道施加一个测试信号,能量与通道灵敏度相关。同时用第二个信号发生器给相邻或者间隔信通也施加一个信号,此信号的能量被设定在 某一特定值,使得测试信号的误码率小于某个比例。

除开能量的精度之外,测试信号和干扰信号的频谱特征也很重要。对于很多接收器来说,用于产生干扰信号的信号发生器的单边带(SSB)相位噪声非常关 键。如果在中频滤波器频段范围内的相位噪声过大,接收器测试可能会不能通过。

大的测试安全系数对于接收器在信噪比恶化条件下能正常工作增添信心。对于使用新技术或者变化的频率系统中,大的测试安全系数可以用来保证这些 不确定性。

衰落测试

用于克服多个随机的无线信道对单一接受信道的影响。在无线环境中,无线信号可能由多个途径从发送器到达接收器。在接收器的输入端,这种多径效 应可能会增加信号的幅度(同相)或者减小信号的幅度(反相)。因此,会导致被接收信号的衰落,从而影响信号的接受。

快速的线性衰落会使得基带脉冲失真。这种失真是线性的,并会产生符号间干扰。自适应均衡器可以通过消除线性失真来减少符号间干扰。

缓慢的衰落会导致信噪比的降低。纠错编码或者接收分级能够克服缓慢衰减的这种影响。

衰减测试可以通过以下步骤来完成:先把测试信号在传送到接收器之前通过一个无线信道的仿真器,经过仿真器模拟信号的多个路径,因此到达接收器 的信号是多个信号的组合。再有接收器进行信号处理。接收器必须能够在处理该组合信号时能保证一定的误码率。衰落测试的设置与灵敏度测试很类似, 只不过多出一个仿真通道。

结论

到目前为止,我们介绍了以下几种基本测试:相对简单的存储器和逻辑芯片测试以及比较复杂的混合信号和射频/无线芯片测试的独特测试要求。由此可 见,对于不同类型芯片的测试,我们需要根据相应的要求采用不同的测试策略和测试方法。

科利登系统有限公司


相关文章:
IC测试原理解析_第一部分-芯片测试
本章主要讨论芯片开发和生产过程中的IC测试基本原理, 内容覆盖了基本测试原理,影响测试方案的基本因素以及IC测试常用术语。本章主要讨论芯片开发和生产过程中IC...
IC测试原理解析。
IC 测试原理解析 发射器测试基础 如图 1 所示,数字通信系统发射器由以下几个部分构成: * CODEC(编码/解码器) * 符号编码 * 基带滤波器(FIR) * IQ 调制 * ...
IC测试原理解析
IC测试原理解析_电子/电路_工程科技_专业资料。IC 测试原理解析第一章 数字集成电路测试的基本原理器件测试的主要目的是保证器件在恶劣的环境条件下能完全实现设计...
IC测试原理解析
IC 测试原理解析(第一部分) 本系列一共四章,下面是第一部分,主要讨论芯片开发和生产过程中的 IC 测试基本原理, 内容覆盖了基本的测试原理,影响测试决策的基本因...
IC测试原理解析
IC测试原理解析_电子/电路_工程科技_专业资料。IC 测试原理解析第一章 数字集成电路测试的基本原理 器件测试的主要目的是保证器件在恶劣的环境条件下能完全实现设计...
IC测试原理解析
50页 2财富值 IC测试原理解析 第一部分-... 4页 免费如要投诉违规内容,请到百度文库投诉中心;如要提出功能问题或意见建议,请点击此处进行反馈。 ...
IC测试原理解析
IC测试原理解析_机械/仪表_工程科技_专业资料 暂无评价|0人阅读|0次下载|举报文档 IC测试原理解析_机械/仪表_工程科技_专业资料。参考资料...
IC测试原理解析2
IC测试原理解析1 暂无评价 3页 5财富值如要投诉违规内容,请到百度文库投诉中心;如要提出功能问题或意见建议,请点击此处进行反馈。 ...
IC测试原理解析(第一部分)
IC测试原理解析 第四部分-... 7页 免费 IC测试基本原理 16页 免费 半导体测试原理 30页 10财富值如要投诉违规内容,请到百度文库投诉中心;如要提出功能问题或意...
IC测试原理解析3
IC 测试原理解析 3 存储器和逻辑芯片的测试 存储器芯片测试介绍 存储器芯片是在特定条件下用来存储数字信息的芯片。存储的信息可以是操作代码,数据 文件或者是二者的...
更多相关标签:
ic测试原理 | ic卡原理 | ic卡工作原理 | ic卡智能水表原理 | ic卡加密原理 | ic卡读卡器原理 | 复位ic工作原理 | ic卡防复制原理 |