当前位置:首页 >> 数学 >>

2014高中数学复习专题讲座不等式知识的综合应用


高中数学复习专题讲座 不等式知识的综合应用
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

高考要求 不等式是继函数与方程之后的又一重点内容之一, 作为解决问题的工具, 与其他知识综 合运用的特点比较突出 不等式的应用大致可分为两类 一类是建立不等式求参数的取值 范围或解决一些实际应用问题;另一类是建立函数关系,利用均值不等式求最值问题、本难 点提供相关的思想方法,使考生能够运用不等式的性质、定理和方法解决函数、方程、实际 应用等方面的问题 重难点归纳 1 应用不等式知识可以解决函数、方程等方面的问题,在解决这些问题时,关键是把 非不等式问题转化为不等式问题,在化归与转化中,要注意等价性 2 对于应用题要通过阅读,理解所给定的材料,寻找量与量之间的内在联系,抽象出 事物系统的主要特征与关系,建立起能反映其本质属性的数学结构,从而建立起数学模型, 然后利用不等式的知识求出题中的问题 典型题例示范讲解 例 1 用一块钢锭烧铸一个厚度均匀,且表面积为 2 平方米的正四棱锥形有盖容器(如右 图)设容器高为 h 米,盖子边长为 a 米, (1)求 a 关于 h 的解析式; (2)设容器的容积为 V 立方米,则当 h 为何值时,V 最 大?求 出 V 的最大值(求解本题时,不计容器厚度) 命题意图 本题主要考查建立函数关系式, 棱锥表面 积和体 积的计算及用均值定论求函数的最值 知识依托 本题求得体积 V 的关系式后,应用均值定理可求得最值 错解分析 在求得 a 的函数关系式时易漏 h>0 技巧与方法 本题在求最值时应用均值定理 解 ①设 h′是正四棱锥的斜高,由题设可得
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

新疆

源头学子 小屋

源头学子 小屋

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

新疆

新疆

源头学子 小屋

源头学子 小屋

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

1 ? 2 ?a ? 4 ? 2 h ?a ? 2 ? ? ?a 2 ? 1 a 2 ? h12 ? 4 ?
②由 V ?

消去 h ?.解得 : a ?

1 h ?1
2

( a ? 0)

1 2 h (h>0) a h? 2 3 3( h ? 1)

1 1 而h ? ? 2 h ? ? 2 1 h h 3( h ? ) h 1 1 所以 V≤ ,当且仅当 h= 即 h=1 时取等号 6 h 1 故当 h=1 米时,V 有最大值,V 的最大值为 立方米 6 例 2 已知 a,b,c 是实数,函数 f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1 时|f(x)|≤1 (1)证明 |c|≤1; (2)证明 当-1 ≤x≤1 时,|g(x)|≤2; (3)设 a>0,有-1≤x≤1 时, g(x)的最大值为 2,求 f(x)
得 V?
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

1

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

命题意图 本题主要考查二次函数的性质、含有绝对值不等式的性质,以及综合应用 数学知识分析问题和解决问题的能力 知识依托 二次函数的有关性质、函数的单调性是药引,而绝对值不等式的性质灵活 运用是本题的灵魂 错解分析 本题综合性较强,其解答的关键是对函数 f(x)的单调性的深刻理解,以及对 条件“-1≤x≤1 时|f(x)|≤1”的运用;绝对值不等式的性质使用不当,会使解题过程空洞, 缺乏严密,从而使题目陷于僵局 技巧与方法 本题(2)问有三种证法,证法一利用 g(x)的单调性;证法二利用绝对值不 等式 ||a|-|b||≤|a±b|≤|a|+|b|;而证法三则是整体处理 g(x)与 f(x)的关系 (1)证明 由条件当=1≤x≤1 时,|f(x)|≤1, 取 x=0 得 |c|=|f(0)|≤1,即|c|≤1 (2)证法一 依题设|f(0)|≤1 而 f(0)=c, 所以|c|≤1 当 a>0 时,g(x)=ax+b 在[-1,1]上是增函数, 于是 g(-1)≤g(x)≤g(1),(-1≤x≤1) ∵|f(x)|≤1,(-1≤x≤1),|c|≤1, ∴g(1)=a+b=f(1)-c≤|f(1)|+|c|=2, g(-1)=-a+b=-f(-1)+c≥-(|f(-2)|+|c|)≥-2, 因此得|g(x)|≤2 (-1≤x≤1); 当 a<0 时,g(x)=ax+b 在[-1,1]上是减函数, 于是 g(-1)≥g(x)≥g(1),(-1≤x≤1), ∵|f(x)|≤1 (-1≤x≤1),|c|≤1 ∴|g(x)|=|f(1)-c|≤|f(1)|+|c|≤2 综合以上结果,当-1≤x≤1 时,都有|g(x)|≤2 证法二 ∵|f(x)|≤1(-1≤x≤1) ∴|f(-1)|≤1,|f(1)|≤1,|f(0)|≤1, ∵f(x)=ax2+bx+c,∴|a-b+c|≤1,|a+b+c|≤1,|c|≤1, 因此,根据绝对值不等式性质得 |a-b|=|(a-b+c)-c|≤|a-b+c|+|c|≤2, |a+b|=|(a+b+c)-c|≤|a+b+c|+|c|≤2, ∵g(x)=ax+b,∴|g(±1)|=|±a+b|=|a±b|≤2, 函数 g(x)=ax+b 的图象是一条直线, 因此|g(x)|在[-1,1]上的最大值只能在区间的端点 x=-1 或 x=1 处取得,于是由|g(±1)| ≤2 得|g(x)|≤2,(-1<x<1 )
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

( x ? 1) 2 ? ( x ? 1) 2 x ?1 2 x ?1 2 ?( ) ?( ) , 4 2 2 x ?1 2 x ?1 2 x ?1 x ?1 ? g ( x ) ? ax ? b ? a[( ) ?( ) ] ? b( ? ) 2 2 2 2 x ?1 2 x ?1 x ?1 2 x ?1 ? [a ( ) ? b( ) ? c ] ? [a ( ) ? b( ) ? c] 2 2 2 2 x ?1 x ?1 ? f( )? f ( ) 2 2 证法三 :? x ?
当-1≤x≤1 时,有 0≤

x ?1 x ?1 ≤1,-1≤ ≤0, 2 2

x ?1 x ?1 )|≤1; ) |≤1,|f( 2 2 x ?1 x ?1 因此当-1≤x≤1 时,|g(x)|≤|f ( )|≤2 ) |+|f( 2 2 (3)解 因为 a>0,g(x)在[-1,1]上是增函数,当 x=1 时取得最大值 2,即 g(1)=a+b=f(1) -f(0)=2 ① ∵-1≤f(0)=f(1)-2≤1-2=-1,∴c=f(0)=-1 因为当-1≤x≤1 时,f(x)≥-1,即 f(x)≥f(0), 根据二次函数的性质,直线 x=0 为 f(x)的图象的对称轴, b 由此得- <0 ,即 b=0 2a 由①得 a=2,所以 f(x)=2x2-1 1 例 3 设二次函数 f(x)=ax2+bx+c(a>0), 方程 f(x)-x=0 的两个根 x1、2 满足 0<x1<x2< x a (1)当 x∈[0,x1 ) 时,证明 x<f(x)<x1;
∵|f(x)|≤1,(-1≤x≤1),∴|f (
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

x1 2 解 (1)令 F(x)=f(x)-x, 因为 x1,2 是方程 f(x)-x=0 的根, x 所以 F(x)=a(x-x1)(x-x2) 当 x∈(0,x1)时,由于 x1<x2,得(x-x1)(x-x2)>0, 又 a>0,得 F(x)=a(x-x1)(x-x2)>0,即 x<f(x) x1-f(x)=x1-[x+F(x)]=x1-x+a(x1-x)(x-x2)=(x1-x)[1+a(x-x2)] 1 ∵0<x<x1<x2< ,∴x1-x>0,1+a(x-x2)=1+ax-ax2>1-ax2>0 a ∴x1-f(x)>0,由此得 f(x)<x1 b (2)依题意 x0=- ,因为 x1、x2 是方程 f(x)-x=0 的两根,即 x1,x2 是方程 ax2+(b- 2a 1)x+c=0 的根 b ?1 ∴x1+x2=- a b a( x1 ? x2 ) ? 1 ax1 ? ax2 ? 1 ∴x0=- ,因为 ax2<1, ? ? 2a 2a 2a ax x ∴x0< 1 ? 1 2a 2 学生巩固练习 1 定义在 R 上的奇函数 f(x)为增函数,偶函数 g(x)在区间[0,+∞)的图像与 f(x)的图 像重合,设 a>b>0,给出下列不等式,其中正确不等式的序号是( ) ①f(b)-f(-a)>g(a)-g(-b) ②f(b)-f(-a)<g(a)-g(-b) ③f(a)-f(-b)>g(b)-g(-a) ④f(a)-f(-b)<g(b)-g(-a) A ①③ B ②④ C ①④ D ②③ 4 2 下列四个命题中 ①a+b≥2 ab ②sin2x+ ≥4 ③设 x,y 都是正数,若 sin 2 x 1 9 ? =1,则 x+y 的最小值是 12 ④若|x-2|<ε ,|y-2|<ε ,则|x-y|<2ε ,其中所有真 x y 命题的序号是__________
(2)设函数 f(x)的图像关于直线 x=x0 对称,证明
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

x0<

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

3 某公司租地建仓库,每月土地占用费 y1 与车库到车站的距离成反比,而每月库存货 物的运费 y2 与到车站的距离成正比,如果在距车站 10 公里处建仓库,这两项费用 y1 和 y2 分别为 2 万元和 8 万元, 那么要使这两项费用之和最小, 仓库应建在离车站__________公里 处 4 已知二次函数 f(x)=ax2+bx+1(a,b∈R,a>0),设方程 f(x)=x 的两实数根为 x1,x2 (1)如果 x1<2<x2<4,设函数 f(x)的对称轴为 x=x0,求证 x0>-1; (2)如果|x1|<2,|x2-x1|=2,求 b 的取值范围
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

5

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

某种商品原来定价每件 p 元,每月将卖出 n 件,假若定价上涨 x 成(这里 x 成即
新疆 源头学子小屋
http://www.xjktyg.com/wxc/

x , 10

0<x≤10 )

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

每月卖出数量将减少 y 成,而售货金额变成原来的 z 倍

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

(1)设 y=ax,其中 a 是满足 (2)若 y= 6 <1
新疆 源头学子小屋
http://www.xjktyg.com/wxc/

1 ≤a<1 的常数,用 a 来表示当售货金额最大时的 x 的值; 3
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

2 x,求使售货金额比原来有所增加的 x 的取值范围 3 设函数 f(x)定义在 R 上,对任意 m、n 恒有 f(m+n)=f(m)?f(n),且当 x>0 时,0<f(x)
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

(1)求证 f(0)=1,且当 x<0 时,f(x)>1; (2)求证 f(x)在 R 上单调递减; (3)设集合 A={ (x,y)|f(x2)?f(y2)>f(1)},集合 B={(x,y)|f(ax-g+2)=1,a∈R},若 A∩ B= ? ,求 a 的取值范围
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

7

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

已知函数 f(x)=

2 x 2 ? bx ? c (b<0)的值域是[1,3] , x2 ?1

(1)求 b、c 的值; (2)判断函数 F(x)=lgf(x),当 x∈[-1,1]时的单调性,并证明你的结论; (3)若 t∈R,求证
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

lg

7 1 1 13 ≤F(|t- |-|t+ |)≤lg 5 6 6 5

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

参考答案 1 解析 由题意 f(a)=g(a)>0,f(b)=g(b)>0,且 f(a)>f(b),g(a)>g(b) ∴f(b)-f(-a)=f(b)+f(a)=g(a)+g(b) 而 g(a)-g(-b)=g(a)-g(b)∴g(a)+g(b)-[g(a)-g(b)] =2g(b)>0,∴f(b)-f(-a)>g(a)-g(-b) 同理可证 f(a)-f(-b)>g(b)-g(-a) 答案 A 2 解析 ①②③不满足均值不等式的使用条件“正、定、等” ④式 |x-y|=|(x-2)-(y-2)|≤|(x-2)-(y-2)|≤|x-2|+|y-2|<ε +ε =2ε 答案 ④
特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www .xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www .xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www .xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www .xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

3

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

解析

新疆
源头学子 小屋
http://www .xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www .xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

由已知 y1=

20 ;y2=0 x
8x+

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

8x(x 为仓库与车站距离)

费用之和 y=y1+y2=0 当且仅当 0

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

20 20 ≥2 0.8 x ? =8 x x

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

8x=

20 即 x=5 时“=”成立 x

答案 5 公里处 4 证明 (1)设 g(x)=f(x)-x=ax2+(b-1)x+1,且 x>0 ∵x1<2<x2<4,∴(x1-2)(x2-2)<0,即 x1x2<2(x1+x2)-4,
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www .xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www .xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

b 1 b ?1 1 1 1 1 ? ? (? ? ) ? ( x1 ? x2 ) ? x1 x2 ? ( x1 ? x2 ) ? ( x1 ? x2 ) ? 2 2a 2 a a 2 2 2 (2) 解 1 1 ? ? ( x1 ? x2 ) ? 2 ? ? (2 ? 4) ? 2 ? ?1 2 2 1 由方程 g(x)=ax2+(b-1)x+1=0 可知 x1?x2= >0,所以 x1,x2 同号? a 1°若 0<x1<2,则 x2-x1=2,∴x2=x1+2>2, ∴g(2)<0,即 4a+2b-1<0 ① 于是得x0 ? ?
又(x2-x1)2=

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

(b ? 1) 2 4 ? ?4 a a2

∴2a+1= (b ? 1) 2 ? 1 (∵a>0)代入①式得, 2 (b ? 1) 2 ? 1 <3-2b ②

1 4 2°若 -2<x1<0,则 x2=-2+x1<-2 ∴g(-2)<0,即 4a-2b+3<0
解②得 b< 又 2a+1= (b ? 1) 2 ? 1 ,代入③式得 2 (b ? 1) 2 ? 1 <2b-1 解④得 b>





7 4

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

1 7 ,当-2<x1<0 时,b> 4 4 5 解 (1)由题意知某商品定价上涨 x 成时,上涨后的定价、每月卖出数量、每月售货金额 x y 分别是 p(1+ )元、n(1- )元、npz 元, 10 10 x y 1 因而 npz ? p(1 ? ) ? n(1 ? ),? z ? (10 ? x)(10 ? y) , 10 10 100
综上,当 0<x1<2 时,b<
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

25(1 ? a) 2 1 5(1 ? a) 2 [-a[x- ] +100+ ] a 100 a 1 5(1 ? a) 由于 ≤a<1,则 0< ≤10 3 a 5(1 ? a) 要使售货金额最大,即使 z 值最大,此时 x= a 2 1 (2)由 z= (10+x)(10- x)>1,解得 0<x<5 3 100 6 (1)证明 令 m>0,n=0 得 f(m)=f(m)?f(0) ∵f(m)≠0,∴f(0)=1
在 y=ax 的条件下,z=
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

新疆

源头学子 小屋

源头学子 小屋

http://www .xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆

新疆

源头学子 小屋

源头学子 小屋

http://www .xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

取 m=m,n=-m,(m<0),得 f(0)=f(m)f(-m) 1 ∴f(m)= ,∵m<0,∴-m>0,∴0<f(-m)<1,∴f(m)>1 f (?m) (2)证明 任取 x1,x2∈R,则 f(x1)-f(x2)=f(x1)-f[(x2-x1)+x1] =f(x1)-f(x2-x1)?f(x1)=f(x1)[1-f(x2-x1)] , ∵f(x1)>0,1-f(x2-x1)>0,∴f(x1)>f(x2), ∴函数 f(x)在 R 上为单调减函数
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

? f ( x 2 ? y 2 ) ? f (1) ?x 2 ? y 2 ? 1 得? (3)由 ? , ? f (ax ? y ? 2) ? 1 ? f (?) ?ax ? y ? 2 ? 0
由题意此不等式组无解,数形结合得
新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

|2| a ?1
2

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

≥1,解得 a2≤3

∴a∈[- 3 , 3 ]

7

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

(1)解

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆
源头学子 小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

设 y=

2 x 2 ? bx ? c ,则(y-2)x2-bx+y-c=0 x2 ? 1



∵x∈R,∴①的判别式Δ ≥0,即 b2-4(y-2)(y-c)≥0, 即 4y2-4(2+c)y+8c+b2≤0 ② 由条件知,不等式②的解集是[1,3] ∴1,3 是方程 4y2-4(2+c)y+8c+b2=0 的两根

?1 ? 3 ? 2 ? c ? ? 8c ? b 2 ∴c=2,b=-2,b=2(舍) 1? 3 ? ? 4 ?
(2)任取 x1,x2∈[-1,1] ,且 x2>x1,则 x2-x1>0,且 (x2-x1)(1-x1x2)>0, ∴f(x2)-f(x1)=-

2 x2 1 ? x2
2

? (?

2x 1 ? x1
2

)?

2( x2 ? x1 )(1 ? x1 x2 ) (1 ? x1 )(1 ? x2 )
2 2

>0,

∴f(x2)>f(x1),lgf(x2)>lgf(x1),即 F(x2)>F(x1) ∴F(x)为增函数
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

1 1 1 1 1 | ? | t ? |, | u |?| (t ? ) ? (t ? ) |? , 6 6 6 6 3 1 1 即- ≤u≤ ,根据 F(x)的单调性知 3 3 1 1 F(- )≤F(u)≤F( ), 3 3 7 1 1 13 ∴lg ≤F(|t- |-|t+ |)≤lg 对任意实数 t 成立 5 6 6 5 课前后备注 数学中的不等式关系 数学是研究空间形式和数量关系的科学,恩格斯在《自然辩证法》一书中指出,数学是 (3)记u ?| t ?
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆

源头学子 小屋

http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

辩证的辅助工具和表现形式, 数学中蕴含着极为丰富的辩证唯物主义因素, 等与不等关系正 是该点的生动体现,它们是对立统一的,又是相互联系、相互影响的;等与不等关系是中学 数学中最基本的关系 等的关系体现了数学的对称美和统一美, 不等关系则如同仙苑奇葩呈现出了数学的奇异 美 不等关系起源于实数的性质,产生了实数的大小关系,简单不等式,不等式的基本性 质, 如果把简单不等式中的实数抽象为用各种数学符号集成的数学式, 不等式发展为一个人 丁兴旺的大家族,由简到繁,形式各异 如果赋予不等式中变量以特定的值、特定的关系, 又产生了重要不等式、均值不等式等 不等式是永恒的吗?显然不是,由此又产生了解不 等式与证明不等式两个极为重要的问题 解不等式即寻求不等式成立时变量应满足的范围 或条件, 不同类型的不等式又有不同的解法; 不等式证明则是推理性问题或探索性问题 推 理性即在特定条件下,阐述论证过程,揭示内在规律,基本方法有比较法、综合法、 分析法; 探索性问题大多是与自然数 n 有关的证明问题, 常采用观察—归纳—猜想—证明的思路, 以 数学归纳法完成证明 另外,不等式的证明方法还有换元法、放缩法、反证法、构造法等 数学科学是一个不可分割的有机整体,它的生命力正是在于各个部分之间的联系 不 等式的知识渗透在数学中的各个分支, 相互之间有着千丝万缕的联系, 因此不等式又可作为 一个工具来解决数学中的其他问题,诸如集合问题,方程(组)的解的讨论,函数单调性的研 究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题 无一不与不等式有着密切的联系 许多问题最终归结为不等式的求解或证明;不等式还可 以解决现实世界中反映出来的数学问题 不等式中常见的基本思想方法有等价转化、分类 讨论、数形结合、函数与方程 总之,不等式的应用体现了一定的综合性,灵活多样性 等与不等形影不离,存在着概念上的亲缘关系,是中学数学中最广泛、最普遍的关系 数 学的基本特点是应用的广泛性、 理论的抽象性和逻辑的严谨性, 而不等关系是深刻而生动的 体现 不等虽没有等的温柔,没有等的和谐,没有等的恰到好处,没有等的天衣无缝,但 它如山之挺拔,峰之隽秀,海之宽阔,天之高远,怎能不让人心旷神怡,魂牵梦绕呢?
新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋 特级教师 王新敞
wxckt@126.com

http://www.xjktyg.com/wxc/

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com

新疆 源头学子小屋
http://www.xjktyg.com/wxc/

特级教师 王新敞
wxckt@126.com


赞助商链接
相关文章:
高中数学复习专题讲座(第5讲)不等式的综合应用
高中数学复习专题讲座(第5讲)不等式的综合应用 资料搜集比较辛苦,就收一点积分吧。隐藏>> 题目 高中数学复习专题讲座 不等式知识的综合应用 高考要求 不等式是继...
题目 高中数学复习专题讲座不等式知识的综合应用
题目 高中数学复习专题讲座不等式知识的综合应用题目 高中数学复习专题讲座不等式知识的综合应用隐藏>> 找家教,到 阳光家教网 全国最大家教平台 题目 高中数学复习专...
高中数学复习专题讲座(第20讲)不等式的综合应用
题目 高中数学复习专题讲座 不等式知识的综合应用 高考要求 不等式是继函数与方程之后的又一重点内容之一,作为解决问题的工 具,与其他知识综合运用的特点比较突出 ...
不等式知识的综合应用
2009 年高考数学一轮复习资料(共十讲,69 页) 19、题目 高中数学复习专题讲座 不等式知识的综合应用 高考要求 不等式是继函数与方程之后的又一重点内容之一,作为...
高中数学复习专题讲座(第20讲)不等式的综合应用
题目 高中数学复习专题讲座 不等式知识的综合应用 高考要求 不等式是继函数与方程之后的又一重点内容之一,作为解决问题的工 具,与其他知识综合运用的特点比较突出 ...
高中数学复习专题讲座(第20讲)不等式的综合应用
高中数学复习专题讲座 不等式知识的综合应用 高考要求 新疆源头学子 小屋 http://www.xjktyg.com/wxc/ 特级教师 王新敞 wxckt@126.com 新疆源头学子 小屋 http...
高中数学复习专题讲座(第20讲)不等式的综合应用
高中数学复习专题讲座 不等式知识的综合应用 高考要求 不等式是继函数与方程之后的又一重点内容之一,作为解决问题的工 具,与其他知识综合运用的特点比较突出 不等式...
高中数学复习专题讲座 圆锥曲线综合题
2014高中数学复习专题讲... 暂无评价 8页 2财富值...圆锥曲线的综合问题包括 解析法的应用,与圆锥曲线有...一元二 次不等式知识 错解分析 在判断 d 与 ...
高中数学复习专题讲座(第14讲)构建数学模型解数列综合...
高中数学复习专题讲座(第14讲)构建数学模型解数列综合...不等式等基础 知识;考查综合运用数学知识解决实际...2014造价工程师各科目冲刺试题及答案 81份文档 笑话...
高中数学复习专题讲座(第19讲)不等式的综合应用
高中数学复习专题讲座(第19讲)不等式的综合应用高中数学复习专题讲座(第19讲)不等式的综合应用隐藏>> 题目 高中数学复习专题讲座 不等式知识的综合应用 高考要求 不...
更多相关标签: