当前位置:首页 >> 信息与通信 >>

cc2640数据手册


Product Folder

Sample & Buy

Technical Documents

Tools & Software

Support & Community

CC2640
ZHCSDE1 – FEBRUARY 2015

/>
CC2640 SimpleLink? Bluetooth? Smart 无线 MCU
1 器件概述
1.1
1

特性
– 片上内部 DC-DC 转换器 – 极少的外部组件 – 与 SimpleLink CC2590 和 CC2592 范围扩展器 无缝集成 – 与采用 4mm × 4mm 和 5mm × 5mm QFN 封装 的 SimpleLink CC13xx 引脚兼容 ? 低功耗 – 宽电源电压范围 ? 正常工作电压:1.8V 至 3.8V ? 外部稳压器模式:1.7V 至 1.95V – 有源模式 RX:5.9mA – 有源模式 TX (0dBm):6.1mA – 有源模式 TX (+5dBm):9.1mA – 有源模式 MCU:61?A/MHz – 有源模式 MCU:48.5 CoreMark/mA – 有源模式传感器控制器:8.2μA/MHz – 待机电流:1μA(RTC 运行,RAM/CPU 保持) – 关断电流:100nA(发生外部事件时唤醒) ? 射频 (RF) 部分 – 2.4GHz RF 收发器,符合 Bluetooth 低功耗 (BLE) 4.1 规范 – 出色的接收器灵敏度(BLE 对应 –97dBm)、可 选择性和阻断性能 – 最高达 +5dBm 的可编程输出功率 – 单端或差分 RF 接口 – 适用于符合各项全球射频规范的系统 ? ETSI EN 300 328(欧洲) ? EN 300 440 2 类(欧洲) ? FCC CFR47 第 15 部分(美国) ? ARIB STD-T66(日本) ? 工具和开发环境 – 功能全面的低成本开发套件 – 针对不同 RF 配置的多种参考设计 – 数据包监听器 PC 软件 – Sensor Controller Studio – SmartRF? Studio – SmartRF Flash Programmer 2 – IAR Embedded Workbench? (用于 ARM) – Code Composer Studio?

? 微控制器 – 强大的 ARM? Cortex?-M3 – EEMBC CoreMark? 评分:142 – 高达 48MHz 的时钟速度 – 128KB 系统内可编程闪存 – 8KB 缓存静态 RAM (SRAM) – 20KB 超低泄漏电流 SRAM – 2 引脚 cJTAG 和 JTAG 调试 – 支持无线升级 (OTA) ? 超低功耗传感器控制器 – 可独立于系统其余部分自主运行 – 16 位架构 – 20KB 超低泄漏电流代码和数据 SRAM ? 高效代码尺寸架构,ROM 中装载驱动程序、 Bluetooth? 低能耗控制器、 和 引导加载程序 ? 封装符合 RoHS 标准 – 4mm × 4mm RSM QFN32(10 个 GPIO) – 5mm × 5mm RHB QFN32(15 个 GPIO) – 7mm × 7mm RGZ QFN48(31 个 GPIO) ? 外设 – 所有数字外设引脚均可连接任意 GPIO – 4 个通用定时器模块(8 × 16 位或 4 × 32 位,均 采用 PWM) – 12 位模数转换器 (ADC)、200MSPS、8 通道模 拟多路复用器 – 持续时间比较器 – 超低功耗模拟比较器 – 可编程电流源 – UART – 2x SSI(SPI、μW 和 TI) – I2C – I2S – 实时时钟 (RTC) – AES-128 安全模块 – 真随机数发生器 (TRNG) – 10、15 或 31 个 GPIO,具体取决于所用封装选 项 – 支持 8 个电容感测按钮 – 集成温度传感器 ? 外部系统

1

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. English Data Sheet: SWRS176

CC2640
ZHCSDE1 – FEBRUARY 2015 www.ti.com.cn

1.2
?

应用
? 健康和医疗 – 温度计 – SpO2 – 血糖仪和血压计 – 体重秤 – 生命体征监控 – 助听器 运动和健身设备 – 活动监视器和健身追踪器 – 心率监视器 – 跑步传感器 – 自行车传感器 – 运动手表 – 健身房器械 – 团体运动装备 HID – 遥控 – 键盘和鼠标 – 游戏 配件 – 玩具 – 追踪器 – 行李牌 – 可穿戴产品

?

?

家庭和楼宇自动化 – 已联网家用电器 – 照明 – 安全锁 – 网关 – 安防系统 工业 – 物流 – 生产制造 – 自动化 – 资产跟踪和管理 – 远程显示 – 电缆更换 – HMI – 访问控制 零售 – 信标 – 广告 – 电子货架标签 (ESL)/价格标签 – 销售点/支付系统

?

?

?

1.3

说明
CC2640 是一款面向 Bluetooth Smart 应用的无线 MCU。 此器件属于 CC26xx 系列的经济高效型超低功耗 2.4GHz RF 器件。 极低的有源 RF 和 MCU 电流以及低功 耗模式流耗可确保卓越的电池使用寿命,允许采用小型纽扣电池在能源采集型应用中使用。 CC2640 含有一个 32 位 ARM Cortex-M3 处理器,与主处理器工作频率同为 48MHz,具有丰富的外设功能 集,包括一个独特的超低功耗传感器控制器,适用于在系统处于休眠模式时连接外部传感器和/或自主采集模 拟和数字数据。 凭此特性,CC2640 成为注重电池使用寿命、小型尺寸和简便实用性的各类应用的理想选择。 Bluetooth 低能耗控制器嵌入在 ROM 中,并在 ARM Cortex?-M0 处理器上单独运行。 此架构可改善整体系 统性能和功耗,并释放闪存以供应用。 Bluetooth Smart 协议栈可从 www.ti.com.cn 免费获取。 器件信息 (1)
器件型号 封装 RGZ (QFN48) RHB (QFN32) RSM (QFN32) 封装尺寸 7.00mm x 7.00mm 5.00mm x 5.00mm 4.00mm x 4.00mm

CC2640F128RGZ CC2640F128RHB CC2640F128RSM (1) 更多信息请参见 节 9,机械封装和可订购产品信息。

2

器件概述

版权 ? 2015, Texas Instruments Incorporated

CC2640
www.ti.com.cn ZHCSDE1 – FEBRUARY 2015

1.4

功能方框图
节 1.4显示了 CC2640 的方框图。

图 1-1. 方框图

版权 ? 2015, Texas Instruments Incorporated

器件概述

3

CC2640
ZHCSDE1 – FEBRUARY 2015 www.ti.com.cn

内容
1 器件概述 .................................................... 1
1.1 1.2 1.3 1.4 特性 ................................................... 1 应用 ................................................... 2 说明 ................................................... 2 功能方框图 ............................................ 3 5.16 5.17 5.18 5.19 Battery Monitor ...................................... 18 Continuous Time Comparator ....................... 19 Low-Power Clocked Comparator Programmable Current Source 19 19 20 20 20 21

2 3 4

修订历史记录............................................... 5 Device Comparison ..................................... 6 Terminal Configuration and Functions .............. 7
4.1 4.2 4.3 4.4 4.5 4.6 Pin Diagram – RSM Package ........................ 7 Signal Descriptions – RSM Package ................. 7 Pin Diagram – RHB Package

6

........................

8

Signal Descriptions – RHB Package ................. 9 Pin Diagram – RGZ Package ....................... 10 Signal Descriptions – RGZ Package ................ 10 Absolute Maximum Ratings ......................... 12 ESD Ratings

5

Specifications ........................................... 12
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15

........................................

12

Recommended Operating Conditions ............... 12 Thermal Characteristics ............................. 13 Electrical Characteristics ............................ 14 General Characteristics ............................. 15 1-Mbps GFSK (Bluetooth Low Energy) – RX ....... 15 1-Mbps GFSK (Bluetooth Low Energy) – TX ....... 16 1-Mbps GFSK (Bluetooth Low Energy) – Common RX/TX ............................................... 16

7 8

............. 32.768-kHz Crystal Oscillator (XOSC_LF) .......... 48-MHz RC Oscillator (RCOSC_HF) ............... 32-kHz RC Oscillator (RCOSC_LF)................. ADC Characteristics................................. Temperature Sensor ................................
24-MHz Crystal Oscillator (XOSC_HF)

17 17 17 17 18 18

9

................... ..................... 5.20 DC Characteristics .................................. 5.21 Control Input AC Characteristics .................... 5.22 Synchronous Serial Interface (SSI) Characteristics. 5.23 Typical Characteristics .............................. Detailed Description ................................... 6.1 Overview ............................................ 6.2 Main CPU ........................................... 6.3 RF Core ............................................. 6.4 Sensor Controller ................................... 6.5 Memory .............................................. 6.6 Debug ............................................... 6.7 Power Management ................................. 6.8 Clock Systems ...................................... 6.9 General Peripherals and Modules .................. 6.10 System Architecture ................................. Application Circuit ..................................... 器件和文档支持 .......................................... 8.1 器件支持 ............................................. 8.2 文档支持 ............................................. 8.3 其他信息 ............................................. 8.4 商标.................................................. 8.5 静电放电警告 ........................................ 8.6 Export Control Notice ............................... 8.7 Glossary ............................................. 机械封装和可订购信息 .................................. 9.1 封装信息 .............................................

24
24 24 24 25 26 26 27 28 28 29

30 32
32 34 34 35 35 35 35

36
36

4

内容

版权 ? 2015, Texas Instruments Incorporated

CC2640
www.ti.com.cn ZHCSDE1 – FEBRUARY 2015

2 修订历史记录
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
日期 2015 年 2 月 修订版本 * 注释 最初发布版本

Copyright ? 2015, Texas Instruments Incorporated

修订历史记录
Submit Documentation Feedback Product Folder Links: CC2640

5

CC2640
ZHCSDE1 – FEBRUARY 2015 www.ti.com.cn

3 Device Comparison
Table 3-1. Device Family Overview
DEVICE CC2650F128xxx CC2640F128xxx CC2630F128xxx CC2620F128xxx (1) (2) PHY SUPPORT Multi-Protocol (2) Bluetooth low energy IEEE 802.15.4 ( ZigBee?/6LoWPAN) IEEE 802.15.4 (RF4CE) FLASH (KB) 128 128 128 128 RAM (KB) 20 20 20 20 GPIO 31, 15, 10 31, 15, 10 31, 15, 10 31, 15, 10 PACKAGE (1) RGZ, RHB, RSM RGZ, RHB, RSM RGZ, RHB, RSM RGZ, RHB, RSM

Package designator replaces the xxx in device name to form a complete device name, RGZ is 7-mm x 7-mm QFN48, RHB is 5-mm x 5mm QFN32, and RSM is 4-mm x 4-mm QFN32. The CC2650 supports all PHYs and can be reflashed to run all the supported standards.

6

Device Comparison Submit Documentation Feedback Product Folder Links: CC2640

Copyright ? 2015, Texas Instruments Incorporated

CC2640
www.ti.com.cn ZHCSDE1 – FEBRUARY 2015

4 Terminal Configuration and Functions
NOTE
I/O pins marked in bold have high drive capabilities. I/O pins marked in italics have analog capabilities.

4.1

Pin Diagram – RSM Package
19 VDDS_DCDC 18 DCDC_SW 21 RESET_N

24 DIO_7

23 DIO_6

22 DIO_5

20 VSS

DIO_8 25 DIO_9 26 VDDS 27 VDDR 28 VSS 29 X24M_N 30 X24M_P 31 VDDR_RF 32 1 2 3 4 5 6 7 RX_TX VSS RF_N VSS X32K_Q1 X32K_Q2 DIO_0 RF_P 8

17 VSS 16 DIO_4 15 DIO_3 14 JTAG_TCKC 13 JTAG_TMSC 12 DCOUPL 11 VDDS2 10 DIO_2 9 DIO_1

CC26xx
QFN32 4x4 RSM

Figure 4-1. RSM (4 mm × 4 mm) Pinout, 0.4-mm Pitch

4.2

Signal Descriptions – RSM Package
Table 4-1. Signal Descriptions – RSM Package

PIN NAME RF_P RF_N RX_TX VDDS VDDS2 VDDS_DCDC VDDR VDDR_RF DCOUPL VSS (1) (2) (3) (4)

PIN 1 2 4 27 11 19 28 32 12 3, 7, 17, 20, 29

PIN TYPE RF I/O RF I/O RF I/O Power Power Power Power Power Power Power

DESCRIPTION Positive RF input signal to LNA during RX Positive RF output signal to PA during TX Negative RF input signal to LNA during RX Negative RF output signal to PA during TX Optional bias pin for the RF LNA 1.8 V to 3.8 V main chip supply (1) 1.8 V to 3.8 V GPIO supply (1) 1.8 V to 3.8 V DC/DC supply. Tie to ground for external regulator mode (1.7 V to 1.95 V operation) 1.7 V to 1.95 V supply, typically connect to output of internal DC/DC (2) (3) 1.7 V to 1.95 V supply, typically connect to output of internal DC/DC (4) (3) 1.27 V regulated digital-supply decoupling capacitor (3) Ground

See 节 8.2, technical reference manual for more details. If internal DC/DC is not used, this pin is supplied internally from the main LDO. Do not supply external circuitry from this pin. If internal DC/DC is not used, this pin must be connected to VDDR for supply from the main LDO. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: CC2640 7

Copyright ? 2015, Texas Instruments Incorporated

CC2640
ZHCSDE1 – FEBRUARY 2015 www.ti.com.cn

Table 4-1. Signal Descriptions – RSM Package (continued)
PIN NAME DCDC_SW EGP RESET_N DIO_0 DIO_1 DIO_2 DIO_3 DIO_4 DIO_5 DIO_6 DIO_7 DIO_8 DIO_9 JTAG_TMSC JTAG_TCKC X32K_Q1 X32K_Q2 X24M_N X24M_P 21 8 9 10 15 16 22 23 24 25 26 13 14 5 6 30 31 PIN 18 PIN TYPE Power Power Digital input Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital/Analog I/O Digital/Analog I/O Digital/Analog I/O Digital/Analog I/O Digital/Analog I/O Digital I/O Digital I/O Analog I/O Analog I/O Analog I/O Analog I/O DESCRIPTION Output from internal DC/DC (1). Tie to ground for external regulator mode (1.7 V to 1.95 V operation) Ground – Exposed Ground Pad Reset, active-low. No internal pullup GPIO, Sensor Controller, High drive capability GPIO, Sensor Controller, High drive capability GPIO, Sensor Controller, High drive capability GPIO, High drive capability, JTAG_TDO GPIO, High drive capability, JTAG_TDI GPIO, Sensor Controller, Analog GPIO, Sensor Controller, Analog GPIO, Sensor Controller, Analog GPIO, Sensor Controller, Analog GPIO, Sensor Controller, Analog JTAG TMSC JTAG TCKC 32-kHz crystal oscillator pin 1 32-kHz crystal oscillator pin 2 24-MHz crystal oscillator pin 1 24-MHz crystal oscillator pin 2

4.3

Pin Diagram – RHB Package
18 VDDS_DCDC 17 DCDC_SW 16 DIO_6 15 DIO_5 14 JTAG_TCKC 13 JTAG_TMSC 12 DCOUPL 11 VDDS2 10 DIO_4 9 1 2 3 4 5 6 7 DIO_0 DIO_1 X32K_Q1 X32K_Q2 RX_TX DIO_2 RF_P RF_N 8 DIO_3 19 RESET_N

24 DIO_11

23 DIO_10

22 DIO_9

21 DIO_8

DIO_12 25 DIO_13 26 DIO_14 27 VDDS 28 VDDR 29 X24M_N 30 X24M_P 31 VDDR_RF 32

CC26xx
QFN32 5x5 RHB

Figure 4-2. RHB (5 mm × 5 mm) Pinout, 0.5-mm Pitch

8

Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: CC2640

20 DIO_7

Copyright ? 2015, Texas Instruments Incorporated

CC2640
www.ti.com.cn ZHCSDE1 – FEBRUARY 2015

4.4

Signal Descriptions – RHB Package
Table 4-2. Signal Descriptions – RHB Package

PIN NAME RF_P RF_N RX_TX VDDS VDDS2 VDDS_DCDC VDDR VDDR_RF DCOUPL DCDC_SW EGP RESET_N DIO_0 DIO_1 DIO_2 DIO_3 DIO_4 DIO_5 DIO_6 DIO_7 DIO_8 DIO_9 DIO_10 DIO_11 DIO_12 DIO_13 DIO_14 JTAG_TMSC JTAG_TCKC X32K_Q1 X32K_Q2 X24M_N X24M_P (1) (2) (3) (4)

PIN 1 2 3 28 11 18 29 32 12 17 19 6 7 8 9 10 15 16 20 21 22 23 24 25 26 27 13 14 4 5 30 31

PIN TYPE RF I/O RF I/O RF I/O Power Power Power Power Power Power Power Power Digital input Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital/Analog I/O Digital/Analog I/O Digital/Analog I/O Digital/Analog I/O Digital/Analog I/O Digital/Analog I/O Digital/Analog I/O Digital/Analog I/O Digital I/O Digital I/O Analog I/O Analog I/O Analog I/O Analog I/O

DESCRIPTION Positive RF input signal to LNA during RX Positive RF output signal to PA during TX Negative RF input signal to LNA during RX Negative RF output signal to PA during TX Optional bias pin for the RF LNA 1.8 V to 3.8 V main chip supply (1) 1.8 V to 3.8 V GPIO supply (1) 1.8 V to 3.8 V DC/DC supply 1.7 V to 1.95 V supply, typically connect to output of internal DC/DC (2) (3) 1.7 V to 1.95 V supply, typically connect to output of internal DC/DC (4) (3) 1.27 V regulated digital-supply decoupling (3) Output from internal DC/DC (1) Ground – Exposed Ground Pad Reset, active-low. No internal pullup GPIO, Sensor Controller GPIO, Sensor Controller GPIO, Sensor Controller, High drive capability GPIO, Sensor Controller, High drive capability GPIO, Sensor Controller, High drive capability GPIO, High drive capability, JTAG_TDO GPIO, High drive capability, JTAG_TDI GPIO, Sensor Controller, Analog GPIO, Sensor Controller, Analog GPIO, Sensor Controller, Analog GPIO, Sensor Controller, Analog GPIO, Sensor Controller, Analog GPIO, Sensor Controller, Analog GPIO, Sensor Controller, Analog GPIO, Sensor Controller, Analog JTAG TMSC, High drive capability JTAG TCKC 32-kHz crystal oscillator pin 1 32-kHz crystal oscillator pin 2 24-MHz crystal oscillator pin 1 24-MHz crystal oscillator pin 2

See 节 8.2, technical reference manual for more details. If internal DC/DC is not used, this pin is supplied internally from the main LDO. Do not supply external circuitry from this pin. If internal DC/DC is not used, this pin must be connected to VDDR for supply from the main LDO.

Copyright ? 2015, Texas Instruments Incorporated

Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: CC2640

9

CC2640
ZHCSDE1 – FEBRUARY 2015 www.ti.com.cn

4.5

Pin Diagram – RGZ Package
34 VDDS_DCDC 25 JTAG_TCKC 24 JTAG_TMSC 23 DCOUPL 22 VDDS3 21 DIO_15 20 DIO_14 19 DIO_13 18 DIO_12 17 DIO_11 16 DIO_10 15 DIO_9 14 DIO_8 13 VDDS2 DIO_5 10 DIO_6 11 X32K_Q1 X32K_Q2 DIO_7 12
Copyright ? 2015, Texas Instruments Incorporated

33 DCDC_SW

35 RESET_N

36 DIO_23

32 DIO_22

31 DIO_21

30 DIO_20

29 DIO_19

28 DIO_18 DIO_4 9

27 DIO_17

DIO_24 37 DIO_25 38 DIO_26 39 DIO_27 40 DIO_28 41 DIO_29 42 DIO_30 43 VDDS 44 VDDR 45 X24M_N 46 X24M_P 47 VDDR_RF 48 1 2 3 4 5 6 7 DIO_0 DIO_1 DIO_2 DIO_3 RF_P RF_N 8

CC26xx
QFN48 7x7 RGZ

Figure 4-3. RGZ (7 mm × 7 mm) Pinout, 0.5-mm Pitch

4.6

Signal Descriptions – RGZ Package
Table 4-3. Signal Descriptions – RGZ Package

PIN NAME RF_P RF_N VDDS VDDS2 VDDS3 VDDS_DCDC VDDR VDDR_RF DCOUPL EGP DCDC_SW RESET_N DIO_0 (1) (2) (3) (4) 10

PIN 1 2 44 13 22 34 45 48 23 33 35 5

PIN TYPE RF I/O RF I/O Power Power Power Power Power Power Power Power Power Digital input Digital I/O

DESCRIPTION Positive RF input signal to LNA during RX Positive RF output signal to PA during TX Negative RF input signal to LNA during RX Negative RF output signal to PA during TX 1.8 V to 3.8 V main chip supply (1) 1.8 V to 3.8 V DIO supply (1) 1.8 V to 3.8 V DIO supply (1) 1.8 V to 3.8 V DC/DC supply 1.7 V to 1.95 V supply, typically connect to output of internal DC/DC (2) (3) 1.7 V to 1.95 V supply, typically connect to output of internal DC/DC (4) (3) 1.27 V regulated digital-supply decoupling capacitor (3) Ground – Exposed Ground Pad Output from internal DC/DC (1) Reset, active-low. No internal pullup GPIO, Sensor Controller

See 节 8.2, technical reference manual for more details. If internal DC/DC is not used, this pin is supplied internally from the main LDO. Do not supply external circuitry from this pin. If internal DC/DC is not used, this pin must be connected to VDDR for supply from the main LDO. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: CC2640

26 DIO_16

CC2640
www.ti.com.cn ZHCSDE1 – FEBRUARY 2015

Table 4-3. Signal Descriptions – RGZ Package (continued)
PIN NAME DIO_1 DIO_2 DIO_3 DIO_4 DIO_5 DIO_6 DIO_7 DIO_8 DIO_9 DIO_10 DIO_11 DIO_12 DIO_13 DIO_14 DIO_15 DIO_16 DIO_17 DIO_18 DIO_19 DIO_20 DIO_21 DIO_22 DIO_23 DIO_24 DIO_25 DIO_26 DIO_27 DIO_28 DIO_29 DIO_30 JTAG_TMSC JTAG_TCKC X32K_Q1 X32K_Q2 X24M_N X24M_P PIN 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 26 27 28 29 30 31 32 36 37 38 39 40 41 42 43 24 25 3 4 46 47 PIN TYPE Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital/Analog I/O Digital/Analog I/O Digital/Analog I/O Digital/Analog I/O Digital/Analog I/O Digital/Analog I/O Digital/Analog I/O Digital/Analog I/O Digital I/O Digital I/O Analog I/O Analog I/O Analog I/O Analog I/O DESCRIPTION GPIO, Sensor Controller GPIO, Sensor Controller GPIO, Sensor Controller GPIO, Sensor Controller GPIO, Sensor Controller, High drive capability GPIO, Sensor Controller, High drive capability GPIO, Sensor Controller, High drive capability GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO, JTAG_TDO, High drive capability GPIO, JTAG_TDI, High drive capability GPIO GPIO GPIO GPIO GPIO GPIO, Sensor Controller, Analog GPIO, Sensor Controller, Analog GPIO, Sensor Controller, Analog GPIO, Sensor Controller, Analog GPIO, Sensor Controller, Analog GPIO, Sensor Controller, Analog GPIO, Sensor Controller, Analog GPIO, Sensor Controller, Analog JTAG TMSC, High drive capability JTAG TCKC 32-kHz crystal oscillator pin 1 32-kHz crystal oscillator pin 2 24-MHz crystal oscillator pin 1 24-MHz crystal oscillator pin 2

Copyright ? 2015, Texas Instruments Incorporated

Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: CC2640

11

CC2640
ZHCSDE1 – FEBRUARY 2015 www.ti.com.cn

5 Specifications
5.1 Absolute Maximum Ratings (1) (2)

[over operating free-air temperature range (unless otherwise noted)] Under no circumstances must the absolute maximum ratings be violated. Stress exceeding one or more of the limiting values may cause permanent damage to the device.
MIN Supply voltage, VDDS
(3)

MAX 4.1 2.25 VDDS+0.3, max 4.1 VDDR+0.3, max 2.25 VDDS 1.49 VDDS / 2.9 min (Vref × 2.9, VDDS) Vref 1.6 +5

UNIT V V V V

VDDR supplied by internal DC/DC regulator or internal GLDO External regulator mode (VDDS and VDDR pins connected on PCB)

–0.3 –0.3 –0.3 –0.3

Supply voltage, VDDS (3) and VDDR Voltage on any digital pin (4) Voltage on crystal oscillator pins, X32K_Q1, X32K_Q2, X24M_N and X24M_P

Internal fixed or relative reference, voltage scaling enabled Internal fixed reference, voltage scaling disabled Voltage on ADC input (Vin) Internal relative reference, voltage scaling disabled External reference, voltage scaling enabled External reference, voltage scaling disabled Voltage on external ADC reference (Vref) Input RF level Tstg (1) (2) (3) (4) Storage temperature

–0.3 –0.3 –0.3 –0.3 –0.3 –0.3

V

V dBm °C

–40

150

All voltage values are with respect to VDDS, unless otherwise noted. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. VDDS2 and VDDS3 needs to be at the same potential as VDDS. Including analog capable DIO.

5.2

ESD Ratings
VALUE Electrostatic discharge (ESD) performance: Human body model (HBM), per ANSI/ESDA/JEDEC JS001 (1) Charged device model (CDM), per JESD22-C101 (2) All pins RF pins non-RF pins ±2500 ±750 ±750 V UNIT

VESD

(1) (2)

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.3

Recommended Operating Conditions
MIN MAX 85 1.95 3.8 100 20 UNIT °C V V mV/us mV/us

The operating conditions for CC2640 are listed below.
Ambient temperature range Operating supply voltage (VDDS and VDDR), external regulator mode Operating supply voltage (VDDS) Rising supply voltage slew rate Falling supply voltage slew rate For operation in 1.8-V systems (VDDS and VDDR pins connected on PCB, internal DC/DC cannot be used) For operation in battery-powered and 3.3-V systems (internal DC/DC can be used to minimize power consumption) –40 1.7 1.8 0 0

12

Specifications Submit Documentation Feedback Product Folder Links: CC2640

Copyright ? 2015, Texas Instruments Incorporated

CC2640
www.ti.com.cn ZHCSDE1 – FEBRUARY 2015

Recommended Operating Conditions (continued)
The operating conditions for CC2640 are listed below.
MIN Falling supply voltage slew rate, with low-power flash settings (1) Positive temperature gradient in No limitation for negative temperature gradient, or outside standby (2) standby mode (1) (2) MAX 3 5 UNIT mV/us °C/s

For smaller coin cell batteries, with high worst-case end-of-life equivalent source resistance, a 22 ?F VDDS input capacitor (see Figure 7-1) should be used to ensure compliance with this slew rate. Applications using RCOSC_LF as sleep timer must also consider the drift in frequency caused by a change in temperature. See Section 5.13

5.4
NAME ΘJA ΘJCtop ΘJB ΨJT ΨJB ΘJCbot (1)

Thermal Characteristics
DESCRIPTION Junction-to-ambient thermal resistance Junction-to-case (top) thermal resistance Junction-to-board thermal resistance Junction-to-top characterization parameter Junction-to-board characterization parameter Junction-to-case (bottom) thermal resistance RSM (°C/W) (1) 36.9 30.3 7.6 0.4 7.4 2.1 RHB (°C/W) (1) 32.8 24.0 6.8 0.3 6.8 1.9 RGZ (°C/W) (1) 29.6 15.7 6.2 0.3 6.2 1.9

°C/W = degrees Celsius per watt.

Copyright ? 2015, Texas Instruments Incorporated

Specifications Submit Documentation Feedback Product Folder Links: CC2640

13

CC2640
ZHCSDE1 – FEBRUARY 2015 www.ti.com.cn

5.5

Electrical Characteristics

Measured on Texas Instruments CC2650EM-5XD reference design with Tc=25°C, VDDS = 3.0 V with internal DC-DC converter, unless otherwise noted.
PARAMETER Icore Core current consumption TEST CONDITIONS Reset. RESET_N pin asserted Shutdown. No clocks running, no retention Standby. With RTC, CPU, RAM and (partial) register retention. RCOSC_LF Standby. With RTC, CPU, RAM and (partial) register retention. XOSC_LF Standby. With Cache, RTC, CPU, RAM and (partial) register retention. RCOSC_LF Standby. With Cache, RTC, CPU, RAM and (partial) register retention. XOSC_LF Idle. Supply Systems and RAM powered. Active. Core running CoreMark Radio RX Radio RX
(1) (2) (1)

MIN

TYP 100 150 1 1.2 2.5 2.7 550 1.45 mA + 31 ?A/MHz 5.9 6.1 6.1 9.1 20 13 237 130 113 12 36 93 164

MAX UNIT nA

?A

Radio TX, 0 dBm output power Iperi

mA

Radio TX, 5 dBm output power (2) Peripheral Current Consumption (Adds to core current Icore for each peripheral unit activated) (3) Peripheral power domain Serial power domain RF Core ?DMA Timers I2C I2S SSI UART (1) (2) (3) Delta current with domain enabled Delta current with domain enabled Delta current with power domain enabled, clock enabled, RF Core Idle Delta current with clock enabled, module idle Delta current with clock enabled, module idle Delta current with clock enabled, module idle Delta current with clock enabled, module idle Delta current with clock enabled, module idle Delta current with clock enabled, module idle

?A ?A ?A ?A ?A ?A ?A ?A ?A

Single-ended RF mode optimized for size and power consumption. Measured on CC2650EM-4XS Differential RF mode optimized for RF performance. Measured on CC2650EM-5XD Iperi not supported in Standby and Shutdown

14

Specifications Submit Documentation Feedback Product Folder Links: CC2640

Copyright ? 2015, Texas Instruments Incorporated

CC2640
www.ti.com.cn ZHCSDE1 – FEBRUARY 2015

5.6

General Characteristics
TEST CONDITIONS MIN TYP 14 151 1015 100 Average delta current 12.6 8 4 Average delta current, 4 bytes at a time 4 bytes at a time 8.15 8 MAX UNIT ?s ?s ?s k Cycles mA ms KB mA ?s

Measured on Texas Instruments CC2650EM-5XD reference design with Tc=25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER Wake-up and Timing Idle -> Active Standby -> Active Shutdown -> Active Flash Memory Supported flash erase cycles before failure Flash page/sector erase current Flash page/sector erase time (1) Flash page/sector size Flash write current Flash write time (1) (1)

This number is dependent on Flash aging and will increase over time and erase cycles

5.7

1-Mbps GFSK (Bluetooth Low Energy) – RX

Measured on Texas Instruments CC2650EM-5XD reference design with Tc=25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless otherwise noted.
PARAMETER Receiver sensitivity Receiver sensitivity Receiver saturation Receiver saturation Co-channel rejection (1) Selectivity, ±1 MHz (1) Selectivity, ±2 MHz (1) Selectivity, ±3 MHz (1) Selectivity, ±4 MHz (1) Selectivity, ±5 MHz or more (1) Selectivity, Image frequency (1) Selectivity, Image frequency ±1 MHz (1) Out-of-band blocking (3) Out-of-band blocking Out-of-band blocking Out-of-band blocking Intermodulation TEST CONDITIONS Differential mode. Measured at the CC2650EM-5XD SMA connector, BER = 10-3 Single-ended mode. Measured on CC2650EM-4XS, at the SMA connector, BER = 10-3 Differential mode. Measured at the CC2650EM-5XD SMA connector, BER = 10-3 Single-ended mode. Measured on CC2650EM-4XS, at the SMA connector, BER = 10-3 Wanted signal at –67 dBm, modulated interferer in channel, BER = 10-3 Wanted signal at –67 dBm, modulated interferer at ±1 MHz, BER = 10-3 Wanted signal at –67 dBm, modulated interferer at ±2 MHz, BER = 10-3 Wanted signal at –67 dBm, modulated interferer at ±3 MHz, BER = 10-3 Wanted signal at –67 dBm, modulated interferer at ±4 MHz, BER = 10-3 Wanted signal at –67 dBm, modulated interferer at ≥ ±5 MHz, BER = 10-3 Wanted signal at –67 dBm, modulated interferer at image frequency, BER = 10-3 Wanted signal at –67 dBm, modulated interferer at ±1 MHz from image frequency, BER = 10-3 30 MHz to 2000 MHz 2003 MHz to 2399 MHz 2484 MHz to 2997 MHz 3000 MHz to 12.75 GHz Wanted signal at 2402 MHz, –64 dBm. Two interferers at 2405 and 2408 MHz respectively, at the given power level MIN TYP –97 –96 4 0 -6 7 / 3 (2) 34 / 25 (2) 38 / 26 (2) 42 / 29 (2) 32 25 3 / 26 (2) –20 –5 –8 –8 –34 MAX UNIT dBm dBm dBm dBm dB dB dB dB dB dB dB dB dBm dBm dBm dBm dBm

(1) (2) (3)

Numbers given as I/C dB X / Y, where X is +N MHz and Y is -N MHz Excluding one exception at Fwanted / 2, per Bluetooth Specification Specifications Submit Documentation Feedback Product Folder Links: CC2640 15

Copyright ? 2015, Texas Instruments Incorporated

CC2640
ZHCSDE1 – FEBRUARY 2015 www.ti.com.cn

1-Mbps GFSK (Bluetooth Low Energy) – RX (continued)
Measured on Texas Instruments CC2650EM-5XD reference design with Tc=25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP –71 MAX UNIT dBm Conducted measurement in a 50 ? single-ended load. Suitable Spurious emissions, 30 to 1000 for systems targeting compliance with EN 300 328, EN 300 440 MHz class 2, FCC CFR47, Part 15 and ARIB STD-T-66 Spurious emissions, 1 to 12.75 GHz RSSI dynamic range RSSI accuracy Conducted measurement in a 50 ? single-ended load. Suitable for systems targeting compliance with EN 300 328, EN 300 440 class 2, FCC CFR47, Part 15 and ARIB STD-T-66

–62 70 ±4

dBm dB dB

5.8

1-Mbps GFSK (Bluetooth Low Energy) – TX

Measured on Texas Instruments CC2650EM-5XD reference design with Tc=25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless otherwise noted.
PARAMETER Output power, highest setting Output power, highest setting Output power, lowest setting TEST CONDITIONS Differential mode, delivered to a single-ended 50-Ω load through a balun Measured on CC2650EM-4XS, delivered to a single-ended 50-Ω load Delivered to a single-ended 50-Ω load through a balun f < 1 GHz, outside restricted bands f < 1 GHz, restricted bands ETSI Spurious emission conducted measurement f < 1 GHz, restricted bands FCC f > 1 GHz, including harmonics MIN TYP 5 2 –21 –43 –65 –76 –46 MAX UNIT dBm dBm dBm dBm dBm dBm dBm

Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 Class 2 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan)

5.9

1-Mbps GFSK (Bluetooth Low Energy) – Common RX/TX
TEST CONDITIONS Difference between center frequency of the received RF signal and local oscillator frequency. MIN –350 –750 TYP MAX 350 750 UNIT kHz ppm

Measured on Texas Instruments CC2650EM-5XD reference design with Tc=25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER Frequency error tolerance Data rate error tolerance

16

Specifications Submit Documentation Feedback Product Folder Links: CC2640

Copyright ? 2015, Texas Instruments Incorporated

CC2640
www.ti.com.cn ZHCSDE1 – FEBRUARY 2015

5.10 24-MHz Crystal Oscillator (XOSC_HF) (1)
Measured on Texas Instruments CC2650EM-5XD reference design with Tc=25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER Crystal frequency Crystal frequency tolerance (2) ESR Equivalent series resistance CL Crystal load capacitance Start-up time (3) (1) (2) (3) 5 150 –40 20 TEST CONDITIONS MIN TYP 24 40 60 9 MAX UNIT MHz ppm ? pF ?s

Probing or otherwise stopping the XTAL while the DC-DC converter is enabled may cause permanent damage to the device. Includes initial tolerance of the crystal, drift over temperature, aging and frequency pulling due to incorrect load capacitance. As per Bluetooth specification Kick-started based on a temperature and aging compensated RCOSC_HF using precharge injection

5.11 32.768-kHz Crystal Oscillator (XOSC_LF)
Measured on Texas Instruments CC2650EM-5XD reference design with Tc=25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER Crystal frequency Crystal frequency tolerance, Bluetooth low energy applications ESR Equivalent series resistance CL Crystal load capacitance 6 –250 30 TEST CONDITIONS MIN TYP 32.768 250 100 12 MAX UNIT kHz ppm k? pF

5.12 48-MHz RC Oscillator (RCOSC_HF)
Measured on Texas Instruments CC2650EM-5XD reference design with Tc=25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER Frequency Uncalibrated frequency accuracy Calibrated frequency accuracy (1) Start-up time (1) Accuracy relatively to the calibration source (XOSC_HF). TEST CONDITIONS MIN TYP 48 ±1% ±0.25% 5 ?s MAX UNIT MHz

5.13 32-kHz RC Oscillator (RCOSC_LF)
Measured on Texas Instruments CC2650EM-5XD reference design with Tc=25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER Calibrated frequency Temperature coefficient TEST CONDITIONS MIN TYP 32.8 50 MAX UNIT kHz ppm/°C

Copyright ? 2015, Texas Instruments Incorporated

Specifications Submit Documentation Feedback Product Folder Links: CC2640

17

CC2640
ZHCSDE1 – FEBRUARY 2015 www.ti.com.cn

5.14

ADC Characteristics (1)
PARAMETER Input voltage range Resolution Sample rate Offset Gain error Internal 4.3 V equivalent reference (2) Internal 4.3 V equivalent reference
(2)

Tc=25°C, VDDS = 3.0 V and voltage scaling enabled, unless otherwise noted.
TEST CONDITIONS MIN 0 12 200 2 2.4 >–1 ±3 Internal 4.3 V equivalent reference , 200 ksps, 9.6-kHz input tone ENOB Effective number of bits VDDS as reference, 200 ksps, 9.6-kHz input tone Internal 1.44 V reference, voltage scaling disabled, 32 samples average, 200 ksps, 300-Hz input tone Internal 4.3 V equivalent reference (2), 200 ksps, 9.6-kHz input tone THD Total harmonic distortion VDDS as reference, 200 ksps, 9.6-kHz input tone Internal 1.44 V reference, voltage scaling disabled, 32 samples average, 200 ksps, 300-Hz input tone Internal 4.3 V equivalent reference (2), 200 ksps, 9.6-kHz input tone SINA Signal-to-noise and D/ distortion ratio SNDR VDDS as reference, 200 ksps, 9.6-kHz input tone Internal 1.44 V reference, voltage scaling disabled, 32 samples average, 200 ksps, 300-Hz input tone Internal 4.3 V equivalent reference (2), 200 ksps, 9.6-kHz input tone SFDR Spurious-free dynamic range VDDS as reference, 200 ksps, 9.6-kHz input tone Internal 1.44 V reference, voltage scaling disabled, 32 samples average, 200 ksps, 300-Hz input tone Serial conversion, time-to-output, 24-MHz clock Internal 4.3 V equivalent reference (2) VDDS as reference Internal 4.3 V equivalent reference (2) VDDS as reference
(2)

TYP

MAX VDDS

UNIT V Bits ksps LSB LSB LSB LSB

DNL (3) Differential nonlinearity INL (4) Integral nonlinearity

9.8 10 11.1 –65 –69 –71 60 63 69 67 72 73 50 0.66 0.75 1.44 VDDS / 2.82 clockcycles mA mA V V dB dB dB Bits

Conversion time Current consumption Current consumption Internal reference voltage Internal reference voltage (1) (2) (3) (4)

Using IEEE Std 1241?-2010 for terminology and test methods. Input signal scaled down internally before conversion, as if voltage range was 0 to 4.3 V No missing codes. Positive DNL typically varies from +0.3 to +3.5 depending on device, see Figure 5-13 For a typical example, see Figure 5-14

5.15

Temperature Sensor
PARAMETER TEST CONDITIONS MIN –40 ±5 3.2 TYP 4 85 MAX UNIT °C °C °C °C/V

Measured on Texas Instruments CC2650EM-5XD reference design with Tc=25°C, VDDS = 3.0 V, unless otherwise noted.
Resolution Range Accuracy Supply voltage coefficient (1) (1) Automatically compensated when using supplied driver libraries.

5.16

Battery Monitor
PARAMETER TEST CONDITIONS MIN 1.8 TYP 50 3.8 MAX UNIT mV V

Measured on Texas Instruments CC2650EM-5XD reference design with Tc=25°C, VDDS = 3.0 V, unless otherwise noted.
Resolution Range

18

Specifications Submit Documentation Feedback Product Folder Links: CC2640

Copyright ? 2015, Texas Instruments Incorporated

CC2640
www.ti.com.cn ZHCSDE1 – FEBRUARY 2015

Battery Monitor (continued)
Measured on Texas Instruments CC2650EM-5XD reference design with Tc=25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER Accuracy TEST CONDITIONS MIN TYP 13 MAX UNIT mV

5.17

Continuous Time Comparator
PARAMETER TEST CONDITIONS MIN 0 0 DCOUPL as reference 1.27 3 <2 Step from –10 mV to +10 mV
(1)

Tc=25°C, VDDS = 3.0 V, unless otherwise noted.
TYP MAX VDDS VDDS UNIT V V V mV mV ?s ?A Input voltage range External reference voltage Internal reference voltage Offset Hysteresis Decision time Current consumption when enabled (1)

0.72 8.6

Additionally the bias module needs to be enabled when running in standby mode.

5.18

Low-Power Clocked Comparator
PARAMETER TEST CONDITIONS MIN 0 32 1.49 - 1.51 1.01 - 1.03 0.78 - 0.79 1.25 - 1.28 0.63 - 0.65 0.42 - 0.44 0.33 - 0.34 <2 <5 Step from –50 mV to +50 mV <1 362 TYP MAX VDDS UNIT V kHz V V V V V V V mV mV clock-cycle nA

Tc=25°C, VDDS = 3.0 V, unless otherwise noted.
Input voltage range Clock frequency Internal reference voltage, VDDS / 2 Internal reference voltage, VDDS / 3 Internal reference voltage, VDDS / 4 Internal reference voltage, DCOUPL / 1 Internal reference voltage, DCOUPL / 2 Internal reference voltage, DCOUPL / 3 Internal reference voltage, DCOUPL / 4 Offset Hysteresis Decision time Current consumption when enabled

5.19 Programmable Current Source
Tc=25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER Current source programmable output range Resolution Current consumption (1) (1) Including current source at maximum programmable output TEST CONDITIONS MIN TYP 0.25 20 0.25 23 MAX UNIT ?A ?A ?A

Additionally the bias module needs to be enabled when running in standby mode.

Copyright ? 2015, Texas Instruments Incorporated

Specifications Submit Documentation Feedback Product Folder Links: CC2640

19

CC2640
ZHCSDE1 – FEBRUARY 2015 www.ti.com.cn

5.20 DC Characteristics
PARAMETER GPIO VOH at 8-mA load GPIO VOL at 8-mA load GPIO VOH at 4-mA load GPIO VOL at 4-mA load GPIO pullup current GPIO pulldown current GPIO high/low input transition, no hysteresis GPIO low-to-high input transition, with hysteresis GPIO high-to-low input transition, with hysteresis GPIO input hysteresis GPIO VOH at 8-mA load GPIO VOL at 8-mA load GPIO VOH at 4-mA load GPIO VOL at 4-mA load GPIO pullup current GPIO pulldown current GPIO high/low input transition, no hysteresis GPIO low-to-high input transition, with hysteresis GPIO high-to-low input transition, with hysteresis GPIO input hysteresis TEST CONDITIONS TA = 25°C, VDDS = 1.8 V IOCURR=2, high drive GPIOs only IOCURR=2, high drive GPIOs only IOCURR=1 IOCURR=1 Input mode, pullup enabled, Vpad=0V Input mode, pulldown enabled, Vpad=VDDS IH=0, transition between reading 0 and reading 1 IH=1, transition voltage for input read as 0→1 IH=1, transition voltage for input read as 1→0 IH=1, difference between 0→1 and 1→0 points TA = 25°C, VDDS = 3.0 V IOCURR=2, high drive GPIOs only IOCURR=2, high drive GPIOs only IOCURR=1 IOCURR=1 TA = 25°C, VDDS = 3.8 V Input mode, pullup enabled, Vpad=0V Input mode, pulldown enabled, Vpad=VDDS IH=0, transition between reading 0 and reading 1 IH=1, transition voltage for input read as 0→1 IH=1, transition voltage for input read as 1→0 IH=1, difference between 0→1 and 1→0 points 277 113 1.67 1.94 1.54 0.4 ?A ?A V V V V 2.68 0.33 2.72 0.28 V V V V 1.54 0.26 1.58 0.21 71.7 21.1 0.88 1.07 0.74 0.33 V V V V ?A ?A V V V V MIN TYP MAX UNIT

5.21 Control Input AC Characteristics
TA = -40°C to 85°C, VDDS = 1.7 V to 3.8 V, unless otherwise noted.
PARAMETER RESET_N low duration TEST CONDITIONS MIN 1 TYP MAX UNIT μs

5.22 Synchronous Serial Interface (SSI) Characteristics
Tc=25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER NO. S1 PARAMETER tclk_per PARAMETER NAME SSIClk cycle time MIN 12 TYP MAX 65024 UNIT system clocks

20

Specifications Submit Documentation Feedback Product Folder Links: CC2640

Copyright ? 2015, Texas Instruments Incorporated

CC2640
www.ti.com.cn ZHCSDE1 – FEBRUARY 2015

5.23 Typical Characteristics
-94
6 5

-95

Output Power (dBm)

Sensitivity (dBm)

4 3 2 1 4XS 2-dBm Setting 5XD 5-dBm Setting

-96

-97

-98 Sensitivity 4XS Sensitivity 5XD -99 -40 -30 -20 -10 0 10 20 30 40 Temperature (GC) 50 60 70 80

0 -40 -30 -20 -10

0

10 20 30 40 Temperature (GC)

50

60

70

80

Figure 5-2. Output Power vs Temperature

Figure 5-1. BLE Sensitivity vs Temperature
16 15 14 13
TX Current (mA)
7

4XS 2-dBm Setting 5XD 5-dBm Setting

6.8 6.6 6.4 6.2 6 5.8

5XD RX Current 4XS RX Current

12 11 10 9 8 7 6 5 4 1.8 2 2.2 2.4 2.6 2.8 3 VDDS (V) 3.2 3.4 3.6 3.8
D015

RX Current (mA)

5.6 -40 -30 -20 -10

0

10 20 30 40 Temperature (GC)

50

60

70

80
D001

Figure 5-3. Transmit Current Consumption vs. Supply Voltage (VDDS)
12 10 8 6 4 2 5XD 5
dBm Setting 4XS 2
dBm Setting 0 -40 -30 -20 -10 0 10 20 30 40 Temperature (GC) 50 60 70 80
D002

Figure 5-4. RX Mode Current Consumption vs Temperature
6 5

Output power (dBm)

TX Current (mA)

4 3 2 1 5XD 5
dBm Setting 4XS 2
dBm Setting 0 1.8 2.3 2.8 VDDS (V) 3.3 3.8
D003

Figure 5-5. TX Mode Current Consumption vs Temperature

Figure 5-6. TX Output Power vs Supply Voltage (VDDS)

Copyright ? 2015, Texas Instruments Incorporated

Specifications Submit Documentation Feedback Product Folder Links: CC2640

21

CC2640
ZHCSDE1 – FEBRUARY 2015 www.ti.com.cn

Active Mode Current Consumpstion (mA)

-95 -96
Sensitivity (dBm)

3.1 Active Mode Current 3.05

-97 -98 -99 -100 BLE 5XD Sensitivity BLE 4XS Sensitivity -101 1.8 2.3 2.8 VDDS (V) 3.3 3.8
D004

3

2.95

2.9

2.85 -40 -30 -20 -10

0

10 20 30 40 Temperature (GC)

50

60

70

80
D006

Figure 5-7. BLE Sensitivity vs Supply Voltage (VDDS)
5 Active Mode Current 4.5 4 3.5 3 2.5 2 1.8

Figure 5-8. Active Mode Current Consumption vs Temperature
4 Standby Mode Current 3.5 3

Current Consumption (mA)

Current (uA)

2.5 2 1.5 1 0.5 0 -20

2.3

2.8 VDDS (V)

3.3

3.8
D007

-10

0

10

20 30 40 50 Temperature (GC)

60

70

80
D008

Figure 5-9. Active Mode Current Consumption vs Supply Voltage (VDDS)
11.4 11.2
Effective Number of Bits

Figure 5-10. Standby Mode Current Consumption With RCOSC RTC vs Temperature
1006.4

Fs= 200 kHz, No Averaging Fs= 200 kHz, 32 samples averaging

1006.2 1006
ADC Code

11 10.8 10.6 10.4 10.2 10

1005.8 1005.6 1005.4 1005.2

9.8 9.6 9.4 200 300 500 1000 2000 5000 10000 20000 Input Frequency (Hz) 100000
D009

1005 1004.8 1.8

2.3

2.8 VDDS (V)

3.3

3.8
D012

Figure 5-11. Effective Number of Bits vs Input Frequency (Internal Reference, No Scaling)

Figure 5-12. SoC ADC Output vs Supply Voltage (Fixed Input, Internal Reference, No Scaling)

22

Specifications Submit Documentation Feedback Product Folder Links: CC2640

Copyright ? 2015, Texas Instruments Incorporated

CC2640
www.ti.com.cn ZHCSDE1 – FEBRUARY 2015

3.5 3 2.5 2 1.5
DNL

1 0.5 0 -0.5 -1 -1.5
1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

ADC Code

Figure 5-13. DNL vs. ADC Code (Internal Reference, No Scaling)

3

2

1

0

INL

-1

-2

-3

-4 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 ADC Code D011

Figure 5-14. INL vs. ADC Code (Internal Reference, No Scaling)

1007.5 1007

11.4 11.2
Effective Number of Bits

Fs= 200 kHz, No Averaging Fs= 200 kHz, 32 samples averaging

11 10.8 10.6 10.4 10.2 10 9.8 9.6

1006.5
ADC Code

1006 1005.5 1005 1004.5 -40 -30 -20 -10

0

10 20 30 40 Temperature (GC)

50

60

70

80
D013

9.4 200 300 500

Figure 5-15. SoC ADC Output vs Temperature (Fixed Input, Internal Reference, No Scaling)

1000 2000 5000 10000 20000 Input Frequency (Hz)

4200

200

400

600

800

0

D010

100000
D009

Figure 5-16. ENOB vs Sampling Frequency (Input Frequency = Fs/10)

Copyright ? 2015, Texas Instruments Incorporated

Specifications Submit Documentation Feedback Product Folder Links: CC2640

23

CC2640
ZHCSDE1 – FEBRUARY 2015 www.ti.com.cn

6 Detailed Description
6.1 Overview
节 1.4 shows a block diagram of the core modules of the CC26xx product family.

6.2

Main CPU
The SimpleLink CC2640 Wireless MCU contains an ARM Cortex-M3 (CM3) 32-bit CPU, which runs the application and the higher layers of the protocol stack. The CM3 processor provides a high-performance, low-cost platform that meets the system requirements of minimal memory implementation, and low-power consumption, while delivering outstanding computational performance and exceptional system response to interrupts. CM3 features include: ? 32-bit ARM Cortex-M3 architecture optimized for small-footprint embedded applications ? Outstanding processing performance combined with fast interrupt handling ? ARM Thumb?-2 mixed 16- and 32 bit instruction set delivers the high performance expected of a 32 bit ARM core in a compact memory size usually associated with 8- and 16-bit devices, typically in the range of a few kilobytes of memory for microcontroller-class applications: – Single-cycle multiply instruction and hardware divide – Atomic bit manipulation (bit-banding), delivering maximum memory use and streamlined peripheral control – Unaligned data access, enabling data to be efficiently packed into memory ? Fast code execution permits slower processor clock or increases sleep mode time ? Harvard architecture characterized by separate buses for instruction and data ? Efficient processor core, system, and memories ? Hardware division and fast digital-signal-processing oriented multiply accumulate ? Saturating arithmetic for signal processing ? Deterministic, high-performance interrupt handling for time-critical applications ? Enhanced system debug with extensive breakpoint and trace capabilities ? Serial wire trace reduces the number of pins required for debugging and tracing ? Migration from the ARM7? processor family for better performance and power efficiency ? Optimized for single-cycle flash memory use ? Ultra-low power consumption with integrated sleep modes ? 1.25 DMIPS per MHz

6.3

RF Core
The RF Core contains an ARM Cortex-M0 processor that interfaces the analog RF and base-band circuitries, handles data to and from the system side, and assembles the information bits in a given packet structure. The RF core offers a high level, command-based API to the main CPU. The RF core is capable of autonomously handling the time-critical aspects of the radio protocols (Bluetooth Low Energy) thus offloading the main CPU and leaving more resources for the user application. The RF core has a dedicated 4-KB SRAM block and runs initially from separate ROM memory. The ARM Cortex-M0 processor is not programmable by customers.

24

Detailed Description Submit Documentation Feedback Product Folder Links: CC2640

Copyright ? 2015, Texas Instruments Incorporated

CC2640
www.ti.com.cn ZHCSDE1 – FEBRUARY 2015

6.4

Sensor Controller
The Sensor Controller contains circuitry that can be selectively enabled in standby mode. The peripherals in this domain may be controlled by the Sensor Controller Engine which is a proprietary power-optimized CPU. This CPU can read and monitor sensors or perform other tasks autonomously, thereby significantly reducing power consumption and offloading the main CM3 CPU. The Sensor Controller is set up using a PC-based configuration tool, called Sensor Controller Studio, and typical use cases may be (but are not limited to): ? Analog sensors using integrated ADC ? Digital sensors using GPIOs and bit-banged I2C and/or SPI ? UART communication for sensor reading or debugging ? Capacitive sensing ? Waveform generation ? Pulse counting ? Keyboard scan ? Quadrature decoder for polling rotation sensors ? Oscillator calibration The peripherals in the Sensor Controller include the following: ? The low-power clocked comparator can be used to wake the device from any state in which the comparator is active. A configurable internal reference can be used in conjunction with the comparator. The output of the comparator can also be used to trigger an interrupt or the ADC. ? Capacitive sensing functionality is implemented through the use of a constant current source, a timeto-digital converter, and a comparator. The continuous time comparator in this block can also be used as a higher-accuracy alternative to the low-power clocked comparator. The Sensor Controller will take care of baseline tracking, hysteresis, filtering and other related functions. ? The ADC is a 12-bit, 200 ksamples/s ADC with 8 inputs and a built-in voltage reference. The ADC can be triggered by many different sources, including timers, I/O pins, software, the analog comparator, and the RTC. ? The Sensor Controller also includes a SPI/I2C digital interface. ? The analog modules can be connected to up to 8 different GPIOs. The peripherals in the Sensor Controller can also be controlled from the main application processor.

Copyright ? 2015, Texas Instruments Incorporated

Detailed Description Submit Documentation Feedback Product Folder Links: CC2640

25

CC2640
ZHCSDE1 – FEBRUARY 2015 www.ti.com.cn

Table 6-1. GPIOs Connected to the Sensor Controller (1)
ANALOG CAPABLE Y Y Y Y Y Y Y Y N N N N N N N N (1) 7 × 7 RGZ DIO# 30 29 28 27 26 25 24 23 7 6 5 4 3 2 1 0 5 × 5 RHB DIO# 14 13 12 11 9 10 8 7 4 3 2 1 0 9 8 7 6 5 2 1 0 4 × 4 RSM DIO#

Depending on the package size, up to 16 pins can be connected to the Sensor Controller. Up to 8 of these pins can be connected to analog modules

6.5

Memory
The flash memory provides nonvolatile storage for code and data. The flash memory is in-system programmable. The SRAM (static RAM) can be used for both storage of data and execution of code and is split into two 4-KB blocks and two 6-KB blocks. Retention of the RAM contents in standby mode can be enabled or disabled individually for each block to minimize power consumption. In addition, if flash cache is disabled, the 8-KB cache can be used as a general-purpose RAM. The ROM provides preprogrammed embedded TI RTOS kernel, Driverlib and lower layer protocol stack software (Bluetooth Low Energy Controller). It also contains a bootloader that can be used to reprogram the device using SPI or UART.

6.6

Debug
The on-chip debug support is done through a dedicated cJTAG (IEEE 1149.7) or JTAG (IEEE 1149.1) interface.

26

Detailed Description Submit Documentation Feedback Product Folder Links: CC2640

Copyright ? 2015, Texas Instruments Incorporated

CC2640
www.ti.com.cn ZHCSDE1 – FEBRUARY 2015

6.7

Power Management
To minimize power consumption, the CC2640 supports a number of power modes and power management features (see Table 6-2). Table 6-2. Power Modes

MODE CPU Flash SRAM Radio Supply System Current Wake-up Time to CPU Active (1) Register Retention SRAM Retention High-Speed Clock Low-Speed Clock Peripherals Sensor Controller Wake-up on RTC Wake-up on Pin Edge Wake-up on Reset Pin (1) Not including RTOS overhead

SOFTWARE CONFIGURABLE POWER MODES ACTIVE Active On On Available On 1.45 mA + 31 ?A/MHz – Full Full XOSC_HF or RCOSC_HF XOSC_LF or RCOSC_LF Available Available Available Available Available IDLE Off Available On Available On 550 ?A 14 ?s Full Full XOSC_HF or RCOSC_HF XOSC_LF or RCOSC_LF Available Available Available Available Available STANDBY Off Off On Off Duty Cycled 1 ?A 151 ?s Partial Full Off XOSC_LF or RCOSC_LF Off Available Available Available Available SHUTDOWN Off Off Off Off Off 0.15 ?A 1015 ?s No No Off Off Off Off Off Available Available

RESET PIN HELD Off Off Off Off Off 0.1 ?A 1015 ?s No No Off Off Off Off Off Off Available

In Active mode, the application CM3 CPU is actively executing code. Active mode provides normal operation of the processor and all of the peripherals that are currently enabled. The system clock can be any available clock source (see Table 6-2). In Idle mode, all active peripherals can be clocked, but the Application CPU core and memory are not clocked and no code is executed. Any interrupt event will bring the processor back into Active mode. In Standby, only the AON (Always-on) domain is active. An external wake event, RTC event, or Sensor Controller event is required to bring the device back to Active. MCU peripherals with retention do not need to be reconfigured when waking up again and the CPU will continue execution from where it went into Standby. All GPIOs are latched in Standby. In Shutdown, the device is entirely turned off, including the AON domain and Sensor Controller, I/Os are latched with the value they had before entering Shutdown. A change of state on any I/O pin defined as a "wake from Shutdown pin" will wake up the device and function as a reset trigger. The CPU can differentiate between reset in this way and reset-by-reset pin or power-on-reset by reading the reset status register. The only state retained in this mode is the latched I/O state and the Flash memory contents. The Sensor Controller is an autonomous processor that can control the peripherals in the Sensor Controller independently of the main CPU. This means that the main CPU does not have to wake up to for example execute an ADC sample or poll a digital sensor over SPI, and saves both current and wake-up time that would otherwise be wasted. The Sensor Controller Studio enables the user to configure the Sensor Controller and choose which peripherals are controlled and which conditions will wake up the main CPU.

Copyright ? 2015, Texas Instruments Incorporated

Detailed Description Submit Documentation Feedback Product Folder Links: CC2640

27

CC2640
ZHCSDE1 – FEBRUARY 2015 www.ti.com.cn

6.8

Clock Systems
The CC2640 supports two external and two internal clock sources. A 24-MHz crystal is required as the frequency reference for the radio. This signal is doubled internally to create a 48-MHz clock. The 32-kHz crystal is optional. Bluetooth low energy requires a slow-speed clock with better than ±500 ppm accuracy if the device is to enter any sleep mode while maintaining a connection. The internal 32-kHz RC oscillator can in some use cases be compensated to meet the requirements. The low-speed crystal oscillator is designed for use with a 32-kHz watch-type crystal. The internal high-speed oscillator (48 MHz) can be used as a clock source for the CPU subsystem. The internal low-speed oscillator (32.768 kHz) can be used as a reference if the low-power crystal oscillator is not used. The 32-kHz clock source can be used as external clocking reference through GPIO.

6.9

General Peripherals and Modules
The I/O controller controls the digital I/O pins and contains multiplexer circuitry to allow a set of peripherals to be assigned to I/O pins in a flexible manner. All digital I/Os are interrupt and wake-up capable, have a programmable pullup and pulldown function and can generate an interrupt on a negative or positive edge (configurable). When configured as an output, pins can function as either push-pull or open-drain. Five GPIOs have high drive capabilities (marked in bold in Section 4). The SSIs are synchronous serial interfaces that are compatible with SPI, MICROWIRE, and Texas Instruments synchronous serial interfaces. The SSIs support both SPI master and slave up to 4 MHz. The UART implements a universal asynchronous receiver/transmitter function. It supports flexible baudrate generation up to a maximum of 3 Mbps and is compatible with the Bluetooth HCI specifications. Timer 0 is a general-purpose timer module (GPTM), which provides two 16-bit timers. The GPTM can be configured to operate as a single 32-bit timer, dual 16-bit timers or as a PWM module. Timer 1, Timer 2, and Timer 3 are also GPTMs. Each of these timers is functionally equivalent to Timer 0. In addition to these four timers, the RF core has its own timer to handle timing for RF protocols; the RF timer can be synchronized to the RTC. The I2C interface is used to communicate with devices compatible with the I2C standard. The I2C interface is capable of 100 kHz and 400 kHz operation, and can serve as both I2C master and I2C slave. The TRNG module provides a true, nondeterministic noise source for the purpose of generating keys, initialization vectors (IVs), and other random number requirements. The TRNG is built on 24 ring oscillators that create unpredictable output to feed a complex nonlinear combinatorial circuit. The watchdog timer is used to regain control if the system fails due to a software error after an external device fails to respond as expected. The watchdog timer can generate an interrupt or a reset when a predefined time-out value is reached. The device includes a direct memory access (?DMA) controller. The ?DMA controller provides a way to offload data transfer tasks from the CM3 CPU, allowing for more efficient use of the processor and the available bus bandwidth. The ?DMA controller can perform transfer between memory and peripherals. The ?DMA controller has dedicated channels for each supported on-chip module and can be programmed to automatically perform transfers between peripherals and memory as the peripheral is ready to transfer more data. Some features of the ?DMA controller include the following (this is not an exhaustive list): ? Highly flexible and configurable channel operation of up to 32 channels ? Transfer modes: Memory-to-memory, memory-to-peripheral, peripheral-to-memory, and peripheral-toperipheral ? Data sizes of 8, 16, and 32 bits

28

Detailed Description Submit Documentation Feedback Product Folder Links: CC2640

Copyright ? 2015, Texas Instruments Incorporated

CC2640
www.ti.com.cn ZHCSDE1 – FEBRUARY 2015

The AON domain contains circuitry that is always enabled, except for in Shutdown (where the digital supply is off). This circuitry includes the following: ? The RTC can be used to wake the device from any state where it is active. The RTC contains three compare and one capture registers. With software support, the RTC can be used for clock and calendar operation. The RTC is clocked from the 32-kHz RC oscillator or crystal. The RTC can also be compensated to tick at the correct frequency even when the internal 32-kHz RC oscillator is used instead of a crystal. ? The battery monitor and temperature sensor are accessible by software and give a battery status indication as well as a coarse temperature measure.

6.10 System Architecture
Depending on the product configuration, CC26xx can function either as a Wireless Network Processor (WNP – an IC running the wireless protocol stack, with the application running on a separate MCU), or as a System-on-Chip (SoC), with the application and protocol stack running on the ARM CM3 core inside the device. In the first case, the external host MCU communicates with the device using SPI or UART. In the second case, the application must be written according to the application framework supplied with the wireless protocol stack.

Copyright ? 2015, Texas Instruments Incorporated

Detailed Description Submit Documentation Feedback Product Folder Links: CC2640

29

CC2640
ZHCSDE1 – FEBRUARY 2015 www.ti.com.cn

7 Application Circuit
NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Few external components are required for the operation of the CC2640 device. Figure 7-1 shows a typical application circuit. For a complete reference design, see the product folder on www.ti.com.
Red = Not necessary if internal bias is used Pin 3 (RXTX) 2.4 nH 1 pF To VDDR pins 10uF Optional inductor. Only needed for 10uH DCDC operation Pin 2 (RF N) Pin 1 (RF P) 2 nH 1 pF 2 nH 12 pF

6.8 pF Antenna (50 Ohm)

6.2-6.8 nH 2.4-2.7 nH

Differential operation
Red = Not necessary if internal bias is used

1 pF

Antenna (50 Ohm)

CC26xx
DCDC_SW VDDS_DCDC input decoupling 10uF ± 22uF

Pin 2 (RF N) Pin 3/4 (RXTX) Pin 2 (RF N) Pin 1 (RF P) Pin 1 (RF P) 15 nH 2 nH 12 pF 1.2 pF 1.2 pF

( GND exposed die attached pad )

Single ended operation
Red = Not necessary if internal bias is used Pin 3 (RXTX) 15 nH

Antenna (50 Ohm)

24MHz XTAL (Load caps on chip)

Pin 2 (RF N)

2 nH 12 pF

Single ended operation with 2 antennas
15 nH Pin 1 (RF P)

1.2 pF

1.2 pF Antenna (50 Ohm)

2 nH 12 pF 1.2 pF 1.2 pF

Figure 7-1. CC2640 Application Circuit

30

Application Circuit

版权 ? 2015, Texas Instruments Incorporated

提交文档反馈意见 产品主页链接: CC2640

CC2640
www.ti.com.cn ZHCSDE1 – FEBRUARY 2015

Internal DC-DC regulator
10uF To all VDDR Pins

Internal LDO regulator
To all VDDR Pins 10uF

External regulator
Ext regulator
1.7V ± 1.95V to all VDDR- and VDDS Pins except VDDS_DCDC 2.2uF

10uH

CC26xx
DCDC_SW Pin VDDS_DCDC Pin

CC26xx
Pin 3/4 (RXTX) Pin 2 (RF N) Pin 1 (RF P) DCDC_SW Pin VDDS_DCDC Pin NC

CC26xx
Pin 3/4 (RXTX) Pin 2 (RF N) Pin 1 (RF P) DCDC_SW Pin VDDS_DCDC Pin

( GND exposed die attached pad )

( GND exposed die attached pad )

( GND exposed die attached pad )

Pin 3/4 (RXTX) Pin 2 (RF N) Pin 1 (RF P)

VDDS_DCDC input decoupling 10uF ± 22uF

VDDS_DCDC input decoupling 10uF ± 22uF

1.8V ± 3.8V to all VDDS Pins

24MHz XTAL (Load caps on chip)

1.8V ± 3.8V Supply voltage

24MHz XTAL (Load caps on chip) To all VDDS Pins

24MHz XTAL (Load caps on chip)

Figure 7-2. Supply Voltage Configurations Power supply decoupling capacitors are not shown. Digital I/Os not included. Pin positions, and component values are not final. For detailed overview of power supply decoupling and wiring, see the TI reference designs and the CC26xx technical reference manual (节 8.2). Figure 7-1 shows that the RF front end can be used both differentially and single-endedly with the option of having internal or external biasing. These options allow for various trade-offs between cost, boardspace, and RF performance. Differential operation with external bias gives the best performance while single-ended operation with internal bias gives the least amount of external components and the lowest power consumption.

版权 ? 2015, Texas Instruments Incorporated

Application Circuit

31

提交文档反馈意见 产品主页链接: CC2640

CC2640
ZHCSDE1 – FEBRUARY 2015 www.ti.com.cn

8 器件和文档支持
8.1 8.1.1 器件支持

开发支持
TI 提供大量的开发工具,其中包括评估处理器性能、生成代码、开发算法工具、以及完全集成和调试软件及 硬件模块的工具。 以下产品为开发 CC2640 器件应用提供支持: 软件工具: SmartRF Studio 7: SmartRF Studio 是一款 PC 应用程序,可帮助无线电系统设计人员评估早期设计过程的 RF-IC。 ? 测试无线数据包收发功能,连续波收发功能 ? 将相关数据写入支持的评估板或调试器,评估定制板上的 RF 性能 ? 可以不搭配任何硬件使用,但此时只能生成、编辑并导出无线配置设置 ? 可与德州仪器 (TI) CCxxxx 系列 RF-IC 的多款开发套件搭配使用 Sensor Controller Studio: Sensor Controller Studio 为 CC26xx 传感器控制器提供开发环境。 此传感器控制器是 CC26xx 系列中的一 款专用功率优化型 CPU,可独立于系统 CPU 状态自主执行简单的后台任务。 ? 允许使用 C 语言这类编程语言实现传感器控制器任务算法 ? 输出传感器控制器接口驱动程序,其中整合了生成的传感器控制器机械代码和相关定义 ? 通过使用集成传感器控制器任务测试和调试功能实现快速开发 这有助于实现有效的传感器数据和算法验 证可视化。 IDE 和编译器: Code Composer Studio: ? 带有项目管理工具和编辑器的集成开发环境 ? Code Composer Studio (CCS) 6.1 及更高版本内置对 CC26xx 系列器件的支持功能。 ? 优先支持的 XDS 调试器:XDS100v3、XDS110 和 XDS200 ? 与 TI-RTOS 高度集成,支持 TI-RTOS 对象视图 IAR ARM Embedded Workbench ? 带有项目管理工具和编辑器的集成开发环境 ? IAR EWARM 7.30.3 及更高版本内置对 CC26xx 系列器件的支持功能。 ? 广泛的调试器支持,支持 XDS100v3、XDS200、IAR I-Jet 和 Segger J-Link ? 带有项目管理工具和编辑器的集成开发环境 ? 适用于 TI-RTOS 的 RTOS 插件 有关 CC2640 平台开发支持工具的完整列表,请访问德州仪器 (TI) 网站 www.ti.com。 有关定价和购买信 息,请联系最近的 TI 销售办事处或授权分销商。

8.1.2

器件命名规则
为了标明产品开发周期的各个产品阶段,TI 为所有部件号和/或日期代码添加了前缀。 每个器件都具有以下 三个前缀/标识中的一个:X、P 或无(无前缀)(例如,CC2640 正在批量生产;因此未分配前缀/标识)。 器件开发进化流程: X P 无 试验器件不一定代表最终器件的电气规范标准并且不可使用生产组装流程。 原型器件不一定是最终芯片模型并且不一定符合最终电气标准规范。 完全合格的芯片模型的生产版本。
版权 ? 2015, Texas Instruments Incorporated

32

器件和文档支持 提交文档反馈意见 产品主页链接: CC2640

CC2640
www.ti.com.cn ZHCSDE1 – FEBRUARY 2015

生产器件已进行完全特性化,并且器件的质量和可靠性已经完全论证。 TI 的标准保修证书适用。 预测显示原型器件(X 或者 P)的故障率大于标准生产器件。 由于它们的预计的最终使用故障率仍未定义, 德州仪器 (TI) 建议不要将这些器件用于任何生产系统。 只有合格的产品器件将被使用。 TI 器件的命名规则也包括一个带有器件系列名称的后缀。 这个后缀表示封装类型(例如,RSM)。 要获得 CC2640 器件(采用 RSM、RHB 或 RGZ 封装类型)的订购部件号,请参见本文档的“封装选项附 录”(TI 网站www.ti.com),或者联系您的 TI 销售代表。

版权 ? 2015, Texas Instruments Incorporated

器件和文档支持 提交文档反馈意见 产品主页链接: CC2640

33

CC2640
ZHCSDE1 – FEBRUARY 2015 www.ti.com.cn

8.2

文档支持
以下文档介绍 CC2640。 www.ti.com 网站上提供了这些文档的副本。 SWCU117 SWRS058

技术参考手册。 德州仪器 (TI) CC26xx 系列产品 芯片勘误表。 德州仪器 (TI) CC26xx? 系列产品

8.2.1

社区资源
下列链接提供到 TI 社区资源的连接。 链接的内容由各个分销商“按照原样”提供。 这些内容并不构成 TI 技术 规范和标准且不一定反映 TI 的观点;请见 TI 的使用条款。 TI E2E? 在线社区 TI 工程师对工程师 (E2E) 社区。 此社区的创建目的是为了促进工程师之间协作。 在 e2e.ti.com 中,您可以咨询问题、共享知识、探索思路,在同领域工程师的帮助下解决问题。 德州仪器 (TI) 嵌入式处理器维基网站 德州仪器 (TI) 嵌入式处理器维基网站。 此网站的建立是为了帮助开发 人员从德州仪器 (TI) 的嵌入式处理器入门并且也为了促进与这些器件相关的硬件和软件的总体 知识的创新和增长。

8.3

其他信息
德州仪器 (TI) 为工业和消费类应用中所使用的专有应用和标准无线应用提供各种经济实用的低功耗射频解决 方案。 其中包括适用于 1GHz 以下频段和 2.4GHz 频段的射频收发器、射频发送器、射频前端和片上系统 以及各种软件解决方案。 此外,德州仪器 (TI) 还提供广泛的相关支持,例如开发工具、技术文档、参考设计、应用专业技术、客户支 持、第三方服务以及大学计划。 低功耗射频 E2E 在线社区设有技术支持论坛并提供视频和博客,您有机会在此与全球同领域工程师交流互 动。 凭借丰富的供选产品解决方案、可实现的最终应用以及广泛的技术支持,德州仪器 (TI) 能够为您提供最全面 的低功耗射频产品组合。

8.3.1

德州仪器 (TI) 低功耗射频网站
德州仪器 (TI) 的低功耗射频网站提供所有最新产品、应用和设计笔记、FAQ 部分、新闻资讯以及活动更 新。 请访问 www.ti.com/lprf。

8.3.2
? ? ?

低功耗射频在线社区
论坛、视频和博客 射频设计帮助 E2E 交流互动

访问:www.ti.com/lprf-forum 立即体验。

34

器件和文档支持 提交文档反馈意见 产品主页链接: CC2640

版权 ? 2015, Texas Instruments Incorporated

CC2640
www.ti.com.cn ZHCSDE1 – FEBRUARY 2015

8.3.3

德州仪器 (TI) 低功耗射频开发者网络
德州仪器 (TI) 建立了一个大型低功耗射频开发合作伙伴网络,帮助客户加快应用开发。 此网络中包括推荐 的公司、射频顾问和独立设计工作室,他们可提供一系列硬件模块产品和设计服务,其中包括: ? 射频电路、低功耗射频和 ZigBee 设计服务 ? 低功耗射频和 ZigBee 模块解决方案以及开发工具 ? 射频认证服务和射频电路制造 如果需要有关模块、工程服务或开发工具的帮助: 请搜索低功耗射频开发者网络查找适合的合作伙伴。www.ti.com/lprfnetwork

8.3.4

低功耗射频电子新闻简报
通过低功耗射频电子新闻简报,您能够了解到最新的产品、新闻稿、开发者相关新闻以及关于德州仪器 (TI) 低功耗射频产品其它新闻和活动。 低功耗射频电子新闻简报文章包含可获取更多在线信息的链接。 访问:www.ti.com/lprfnewsletter 立即注册

8.4

商标
IAR Embedded Workbench is a registered trademark of IAR Systems AB. SimpleLink, SmartRF, Code Composer Studio, CC26xx, E2E are trademarks of Texas Instruments. ARM7 is a trademark of ARM Limited. ARM, Cortex are registered trademarks of ARM Limited (or its subsidiaries). ARM Thumb is a registered trademark of ARM Limited. Bluetooth is a registered trademark of Bluetooth SIG, Inc. CoreMark is a registered trademark of Embedded Microprocessor Benchmark Consortium. IEEE Std 1241 is a trademark of Institute of Electrical and Electronics Engineers, Incorporated. ZigBee is a registered trademark of ZigBee Alliance, Inc.

8.5

静电放电警告
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可 能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。

8.6

Export Control Notice
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from Disclosing party under this Agreement, or any direct product of such technology, to any destination to which such export or reexport is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws.

8.7

Glossary
SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms and definitions.

版权 ? 2015, Texas Instruments Incorporated

器件和文档支持 提交文档反馈意见 产品主页链接: CC2640

35

CC2640
ZHCSDE1 – FEBRUARY 2015 www.ti.com.cn

9 机械封装和可订购信息
9.1 封装信息
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知 且不对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

36

机械封装和可订购信息 提交文档反馈意见 产品主页链接: CC2640

版权 ? 2015, Texas Instruments Incorporated

重要声明
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售 都遵循在订单确认时所提供的TI 销售条款与条件。 TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使 用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。 TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险, 客户应提供充分的设计与操作安全措施。 TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权 限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用 此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。 对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。 在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明 示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。 客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法 律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障 及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而 对 TI 及其代理造成的任何损失。 在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用 的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。 TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。 只有那些 TI 特别注明属于军用等级或“增强型塑料”的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面 向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有 法律和法规要求。 TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要 求,TI不承担任何责任。 产品 数字音频 放大器和线性器件 数据转换器 DLP? 产品 DSP - 数字信号处理器 时钟和计时器 接口 逻辑 电源管理 微控制器 (MCU) RFID 系统 OMAP应用处理器 无线连通性 www.ti.com.cn/audio www.ti.com.cn/amplifiers www.ti.com.cn/dataconverters www.dlp.com www.ti.com.cn/dsp www.ti.com.cn/clockandtimers www.ti.com.cn/interface www.ti.com.cn/logic www.ti.com.cn/power www.ti.com.cn/microcontrollers www.ti.com.cn/rfidsys www.ti.com/omap www.ti.com.cn/wirelessconnectivity 德州仪器在线技术支持社区 www.deyisupport.com IMPORTANT NOTICE 邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright ? 2015, 德州仪器半导体技术(上海)有限公司 通信与电信 计算机及周边 消费电子 能源 工业应用 医疗电子 安防应用 汽车电子 视频和影像 应用 www.ti.com.cn/telecom www.ti.com.cn/computer www.ti.com/consumer-apps www.ti.com/energy www.ti.com.cn/industrial www.ti.com.cn/medical www.ti.com.cn/security www.ti.com.cn/automotive www.ti.com.cn/video

PACKAGE OPTION ADDENDUM

www.ti.com

11-Mar-2015

PACKAGING INFORMATION
Orderable Device CC2640F128RGZR CC2640F128RGZT CC2640F128RHBR CC2640F128RHBT CC2640F128RSMR CC2640F128RSMT Status
(1)

Package Type Package Pins Package Drawing Qty VQFN VQFN VQFN VQFN VQFN VQFN RGZ RGZ RHB RHB RSM RSM 48 48 32 32 32 32 2500 250 3000 250 3000 250

Eco Plan
(2)

Lead/Ball Finish
(6)

MSL Peak Temp
(3)

Op Temp (°C) -40 to 85 -40 to 85 -40 to 85 -40 to 85 -40 to 85 -40 to 85

Device Marking
(4/5)

Samples

ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE

Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br)

CU NIPDAU CU NIPDAU CU NIPDAU CU NIPDAU CU NIPDAU CU NIPDAU

Level-3-260C-168 HR Level-3-260C-168 HR Level-3-260C-168 HR Level-3-260C-168 HR Level-3-260C-168 HR Level-3-260C-168 HR

CC2640 F128 CC2640 F128 CC2640 F128 CC2640 F128 CC2640 F128 CC2640 F128

(1)

The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device.
(2)

Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)

MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(4)

(5)

Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Addendum-Page 1

PACKAGE OPTION ADDENDUM

www.ti.com

11-Mar-2015

(6)

Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Addendum-Page 2

重要声明
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售 都遵循在订单确认时所提供的TI 销售条款与条件。 TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使 用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。 TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险, 客户应提供充分的设计与操作安全措施。 TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权 限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用 此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。 对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。 在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明 示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。 客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法 律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障 及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而 对 TI 及其代理造成的任何损失。 在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用 的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。 TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。 只有那些 TI 特别注明属于军用等级或“增强型塑料”的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面 向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有 法律和法规要求。 TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要 求,TI不承担任何责任。 产品 数字音频 放大器和线性器件 数据转换器 DLP? 产品 DSP - 数字信号处理器 时钟和计时器 接口 逻辑 电源管理 微控制器 (MCU) RFID 系统 OMAP应用处理器 无线连通性 www.ti.com.cn/audio www.ti.com.cn/amplifiers www.ti.com.cn/dataconverters www.dlp.com www.ti.com.cn/dsp www.ti.com.cn/clockandtimers www.ti.com.cn/interface www.ti.com.cn/logic www.ti.com.cn/power www.ti.com.cn/microcontrollers www.ti.com.cn/rfidsys www.ti.com/omap www.ti.com.cn/wirelessconnectivity 德州仪器在线技术支持社区 www.deyisupport.com IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright ? 2015, Texas Instruments Incorporated 通信与电信 计算机及周边 消费电子 能源 工业应用 医疗电子 安防应用 汽车电子 视频和影像 应用 www.ti.com.cn/telecom www.ti.com.cn/computer www.ti.com/consumer-apps www.ti.com/energy www.ti.com.cn/industrial www.ti.com.cn/medical www.ti.com.cn/security www.ti.com.cn/automotive www.ti.com.cn/video


相关文章:
Cc2640 ANCS Sample_图文
Cc2640 ANCS Sample_计算机软件及应用_IT/计算机_专业资料。Ti CC26xx BLE支持苹果ANCS的例程。Cc2640 ANCS Sample From Texas Instruments Wiki Jump to: ...
更多相关标签:
ov2640数据手册 | cc2530中文数据手册 | cc2541中文数据手册 | cc2530数据手册 | cc2540中文数据手册 | cc2540数据手册 | cc3200中文数据手册 | cc2530数据手册完全版 |