当前位置:首页 >> 学科竞赛 >>

2. Solution to Thepretical Problem 2


Theoretical 2: Solution
Relativistic Correction on GPS Satelitte
Part A. Single accelerated particle 1. The equation of motion is given by F = = d (γmv ) dt ˙ mcβ
3

(1)

(1 ? β 2 ) 2 F = γ 3 ma, where γ = √
1 1?β 2

(2)

and β = v c . So the acceleration is given by a= F . γ3m (3)

2. Eq.(3) can be rewritten as dβ F = 3 dt γ m t dβ F = dt 3 mc 0 (1 ? β 2 ) 2 c β 1 ? β2 = Ft mc
Ft mc Ft 2 mc

β 0

(4) . (5)

β=

1+ 3. Using Eq.(5), we get
x t

dx =
0 0

F tdt m 1+ ? ? 1+
Ft 2 mc

x=

mc2 F

Ft mc

2

? ? 1? . (6)

4. Consider the following systems, a frame S’ is moving with respect to another frame S, with velocity u in the x direction. If a particle is moving in the S’ frame with velocity v also in x direction, then the particle velocity in the S frame is given by v= u+v . 1 + uv c2 (7)

Relativistic Correction on GPS Satelitte

Page 1 of 10

Theoretical 2: Solution
Relativistic Correction on GPS Satelitte
If the particles velocity changes with respect to the S’ frame, then the velocity in the S frame is also change according to dv = dv = dv u+v ? uv 1 + c2 1 + uv c2 1 dv 2 γ 1 + uv c2
2. 2

udv c2 (8)

The time in the S’ frame is t , so the time in the S frame is given by t=γ t + ux c2 , (9)

so the time change in the S’ frame will give a time change in the S frame as follow dt = γdt The acceleration in the S frame is given by a= a 1 dv = 3 dt γ 1 + uv c2
3.

1+

uv c2

.

(10)

(11)

If the S’ frame is the proper frame, then by de?nition the velocity v = 0. Substitute this to the last equation, we get a (12) a = 3. γ Combining Eq.(3) and Eq.(12), we get a = 5. Eq.(3) can also be rewritten as dβ g = 3 γdτ γ dβ g = 2 1?β c c β 1? β2 = gτ c (14)
τ

F ≡ g. m

(13)

β 0


0

ln

1 1? β2

+

(15)

gτ 1+β =ec 1?β

β e

gτ c

+ e?

gτ c

? e? gτ β = tanh . c =e

gτ c

gτ c

(16)

Relativistic Correction on GPS Satelitte

Page 2 of 10

Theoretical 2: Solution
Relativistic Correction on GPS Satelitte
6. The time dilation relation is dt = γdτ. From eq.(16), we have γ= Combining this equations, we get
t τ

(17) gτ . c

1 1 ? β2

= cosh

(18)

dt =
0 0

dτ cosh

gτ c (19)

c gτ t = sinh . g c

Part B. Flight Time 1. When the clock in the origin time is equal to t0 , it emits a signal that contain the information of its time. This signal will arrive at the particle at time t, while the particle position is at x(t). We have c(t ? t0 ) = x(t) ? c t ? t0 = ? 1 + g t0 2 ? t= 2 1?
gt0 c gt0 c

(20) gt c
2

? ? 1? (21)

.

When the information arrive at the particle, the particle’s clock has a reading according to eq.(19). So we get c gτ t0 2 ? sinh = g c 2 1? 0= 1 2 c
gt0 c gt0 c gt0 2

gt0 gτ 1 + sinh c c gt0 gτ gτ = 1 + sinh ± cosh . c c c ?

+ sinh

gτ c (22)

Using initial condition t = 0 when τ = 0, we choose the negative sign gt0 gτ gτ = 1 + sinh ? cosh c c c c ? gτ t0 = 1?e c . g
c As τ → ∞, t0 = g . So the clock reading will freeze at this value.

(23)

Relativistic Correction on GPS Satelitte

Page 3 of 10

Theoretical 2: Solution
Relativistic Correction on GPS Satelitte
2. When the particles clock has a reading τ0 , its position is given by eq.(6), and the time t0 is given by eq.(19). Combining this two equation, we get x= c2 g 1 + sinh2 gτ0 ?1 . c (24)

The particle’s clock reading is then sent to the observer at the origin. The total time needed for the information to arrive is given by c g c = g c t= g c τ0 = g t= The time will not freeze. Part C. Minkowski Diagram 1. The ?gure below show the setting of the problem. The line AB represents the stick with proper length equal L in the S frame.
?β The length AB is equal to 1 L in the S’ frame. 1+β 2 The stick length in the S’ frame is represented by the line AC
2

sinh

gτ0 x + c c gτ0 gτ0 sinh + cosh ?1 c c e
gτ0 c

(25)

?1

(26) (27)

ln

gt +1 . c

3. The!position!of!the!particle!is!given!by!eq.!(5).!! Figure 1: Minkowski Diagram ! ! ! !! AB ! AC = = 1 ? β 2 L. ! cos θ ! 2. The position of the particle is given by eq.(6). ! ! ! ! Relativistic Correction on GPS Satelitte ! ! ! !

! ! ! ! ! ! ! ! ! ! ! !

ct#

ct’#

C! !! A! !! B! x#

x’#

(28)

Page 4 of 10

Theoretical 2: Solution
Relativistic Correction on GPS Satelitte
!! !" ! !! ! !"′! ! ′!

!! ! ! !! !

!

Figure 2: Minkowski Diagram Part D. Two Accelerated Particles 1. τB = τA . 2. From the diagram, we have tan θ = β = ct2 ? ct1 . x2 ? x1

(29)

Using eq.(6), and eq.(19) along with the initial condition, we get gτ1 c2 cosh ?1 , g c c2 gτ2 x2 = cosh ? 1 + L. g c x1 = Using eq.(16), eq.(19), eq.(30) and eq.(31), we obtain gτ1 tanh = c L+ = gL gτ1 sinh c2 c gL gτ1 sinh c2 c So C1 =
gL . c2 gL c2

(30) (31)

c
c2 g

c g

2 sinh gτ c ?

c g

1 sinh gτ c

2 cosh gτ c ?1 ?

c2 g

1 cosh gτ c ?1

gτ1 2 sinh gτ c ? sinh c

gτ1 2 + cosh gτ c ? cosh c gτ2 gτ1 gτ2 gτ1 = sinh cosh ? cosh sinh c c c c g = sinh (τ2 ? τ1 ) . c

(32)

Relativistic Correction on GPS Satelitte

Page 5 of 10

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

gτ 2 gτ ? sinh 1 c c ! !! = gL gτ 2 gτ 1 + cosh ? cosh c2 c c gL gτ gτ gτ gτ gτ sinh 1 = sinh 2 cosh 1 ? cosh 2 sinh 1 2 c c c c c c Theoretical 2: Solution Using!identity!relation,!the!last!equation!is!simply!to! gL gτ g Relativistic ! (15)! sinh 1 = Correction sinh (τ 2 ? τ 1 ) !! on GPS Satelitte 2 c c c sinh
!!

t2!

t1!

!!

!! x1! x2!

! Figure 3: Minkowski Diagram for two particles 3. From!the!length!contraction,!we!have! x ?x L' = 2 1 3. From the length contraction, we have γ1 ! !! x2?? x1 dτ ? d L dx dx 1 x ? x d γ ′ 2 2 1 2 1 1 L == ? ? 1τ dτ dτ 1 ? dτ 1 ? γ 12 dτ 1 ?γd ? γ1 2 1
dL = dτ1 dx2 dτ2 dx1 ? dτ2 dτ1 dτ1 1 x2 ? x1 dγ1 ? . 2 γ1 dτ1 γ1

(33) (34)

Take derivative of eq.(30), eq.(31) and eq.(32), we get gτ1 dx1 = c sinh , dτ1 c dx2 gτ2 = c sinh , dτ2 c gL gτ1 g cosh = cosh (τ2 ? τ1 ) 2 c c c The last equation can be rearrange to get
gL 1 cosh gτ dτ2 c c2 = + 1. dτ1 cosh g c (τ2 ? τ1 )

(35) (36) dτ2 ?1 . dτ1 (37)

(38)

Relativistic Correction on GPS Satelitte

Page 6 of 10

Theoretical 2: Solution
Relativistic Correction on GPS Satelitte
From eq.(29), we have x2 ? x1 = c c(t2 ? t1 ) = 1 β1 tanh gτ c c gτ2 c gτ1 sinh ? sinh g c g c . (39)

Combining all these equations, we get dL1 = dτ1
gL gτ gτ2 c2 cosh c1 gτ1 gτ2 c sinh ? c sinh + c sinh c cosh g c c ( τ ? τ ) 2 1 c

1 1 cosh gτ c

?

c2 gτ2 gτ1 sinh ? sinh g c c

1 1 gτ1 tanh c cosh2

gτ1 c

g gτ1 sinh c c (40)

2 sinh gτ dL1 gL c . = dτ1 c cosh g c (τ2 ? τ1 )

So C2 =

gL c .

Part E. Uniformly Accelerated Frame 1. Distance from a certain point xp according to the particle’s frame is L = L = x ? xp γ
c2 g1 τ cosh g1 c ? 1 ? xp τ cosh g1 c
2

(41)

c c2 g + xp L = ? 1 g1 τ . g1 cosh c c For L equal constant, we need xp = ? g . 1
2

(42)

2. First method: If the distance in the S’ frame is constant = L, then in the S frame the length is 1 + β2 Ls = L . (43) 1 ? β2 So the position of the second particle is x2 = x1 + Ls cos θ ? 2 c ? g1 t1 1+ = g1 c x2 = c2 +L g1 1+ (44)
2

? ? 1? + L 1 + g1 t1 c (45)

g1 t1 c

2

?

c2 . g1

Relativistic Correction on GPS Satelitte

Page 7 of 10

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
2

!
2 Theoretical ?c ? ? g t ?2: cSolution x2 = ? + L ? 1 + ? 1 1 ? ? !! ? Correction c ? g1 ? g1 ? Relativistic on GPS 2

Satelitte

(17)!

!

t2! L" t1! !!

! x1! x2! ! Figure 4: Minkowski Diagram for two particles the!time!of!the!second!particle!is! ct 2 = ct1 + LS sin θ
The time of the second particle is

? ? g1t1 ? ? ct2 = ct? + Ls sin cθ 1L ? 2 ? ? 2 ? 1tβ 1? 1g + ? ? β 1+ ? ? = ct + L 1 ? ? 2 ! !! + β 2 c ? 1 ? β ?1 = ct1 + ? ? g1 L ct2 = t1 ? c + . ? c 1 ? ? 2 ? ? Substitute eq.(47) to eq.(45) to get g1t1 ? ? 1+ ? ? ? ? c ? ? ? ?

(46)

(47)

!

x2 =

c2 g1 L g ? 1+ ? 1 t2 + L = ct 1 + L ? ? 2 1 2 gct c !!1 + g12 1 ? c ?
c

2

?
2

c2 g1 c2 . g1

(18)!
(48)

Substitute!eq.(18)!to!eq.(17)!to!get! 2
x2 =

c +L g1

1+

g1 1+
g1 L c2

t2 c

?

From the last equation, we can identify g2 ≡ g1 1+
g1 L c2

.

(49)

Relativistic Correction on GPS Satelitte

Page 8 of 10

Theoretical 2: Solution
Relativistic Correction on GPS Satelitte
As for con?rmation, we can subsitute this relation to the second particle position to get c2 x2 = g2 1+ g2 t2 c
2

?

c2 . g1

(50)

Second method: In this method, we will choose g2 such that the special point like the one descirbe in the question 1 is exactly the same as the similar point for the proper acceleration g1 . For ?rst particle, we have xp1 g1 = c2 For second particle, we have (L + xp1 )g2 = c2 Combining this two equations, we get g2 = g2 = c2
c L+ g 1 g1
2

1+

g1 L c2

.

(51)

3. The relation between the time in the two particles is given by eq.(47) t2 = t1 1 + c2 g2 τ2 sinh g2 c g2 τ2 sinh c g2 τ2 dτ2 dτ1 Part F. Correction for GPS 1. From Newtons Law GM m = mω 2 r r2 r= gR2 T 2 4π 2
1 3

g1 L c2 c2 g1 L g1 τ1 = 1+ 2 sinh g1 c c g1 τ1 = sinh c = g1 τ1 g1 g1 L = =1+ 2 . g2 c

(52) (53)

(54) (55)

r = 2.66 × 107 m. The velocity is given by v = ωr = 2πgR2 T
1 3

(56)

= 3.87 × 103 m/s.

Relativistic Correction on GPS Satelitte

Page 9 of 10

Theoretical 2: Solution
Relativistic Correction on GPS Satelitte
2. The general relativity e?ect is dτg =1+ dt dτg =1+ dt After one day, the di?erence is ?τg = gR2 R ? r ?T c2 Rr = 4.55 × 10?5 s. (59) ?U mc2 gR2 R ? r . c2 Rr (57) (58)

The special relativity e?ect is dτs = dt = 1? 1? v2 c2 2πgR2 T 2πgR2 T
2 3

(60) 1 c2 1 . c2 (61)

1 ≈1? 2 After one day, the di?erence is 1 ?τs = ? 2

2 3

2πgR2 T

2 3

1 ?T c2

(62)

= ?7.18 × 10?6 s. The satelite’s clock is faster with total ?τ = ?τg + ?τs = 3.83 × 10?5 s. 3. ?L = c?τ = 1.15 × 104 m = 11.5km.

Relativistic Correction on GPS Satelitte

Page 10 of 10


相关文章:
国际物理林匹克竞赛试题ThQ_I_Mechanics_Solution1983
( 1.2) As a consequence, the motion of the particle towards the wall ...Mechanics – Problem I - Solution Page 1 from 17 IPhO 1983 Theoretical ...
国际物理林匹克竞赛试题6t...
Each theoretical problem was scored from 0 to 10... 1978 2 1 1 Solution Problem 1 The inertia ...1.2 Problem 2 (Molecular Physics) Two cylinders...
国际天文与天体物理竞赛章...
In addition to the students, two accompanying ... the theoretical competition (including short and ...The solution to each problem should contain an ...
2012年秋中学英语教学法在...
2.0 3.第 3 题 Two theories concerning language learning are the ____. ...第 24 题 One common problem in English learning is that many students ...
科技英语翻译答案
第 1 节 翻译练习 2 Semiconductor devices, called...affected by still another problem--- weightless...the theoretical analyses using the other approaches...
流体力学格子法的外文文献及翻译资料
2.英文原文 SCIENCE CHINA Earth Sciences September ...As to the theoretical analyses ? Science China ... mechanism behind the complex flow problems. ...
近似动态规划相关的外文文...
problems to show the cost function J , which is the theoretical solution ...2. HDP is a method for estimating the cost function. Estimating the cost...
新视野大学英语四Quiz1-ReadingUnit1-2题目及答案
新视野大学英语四Quiz1-ReadingUnit1-2题目及答案_英语学习_外语学习_教育专区。...There _______ new problems in respect of the relationship between the ...
国际经济学第九版英文课后...
1.2 International Trade and The Nation's Standard of Living Case Study 1...Answer to Problems 1. a) International economic problems reported in our ...
2013校园招聘笔试【英语+行测】押题卷(2)含答案解析
2013校园招聘笔试【英语+行测】押题卷(2)含答案解析_金融/投资_经管营销_专业... and simple-mindedness also characterize theoretical mathematics,though to a ...
更多相关标签: