当前位置:首页 >> 机械/仪表 >>

矩形绕线机的张力控制 外文翻译


外文资料翻译
题 目: 矩形绕线机的张力控制

附 件: 1.外文资料翻译译文;2.外文原文。 附件 1:外文资料翻译译文 矩形绕线机的张力控制
彭问及卡里斯特普尔顿 工学部和测量 南昆士兰大学 图文巴 4350,QLD,澳大利亚 电子邮箱:pengwen@usq.edu.au 闫离 部与计算数学 南昆士兰大学 图文巴 4350,QLD,澳

大利亚 电子邮件:liyan@usq.edu.au

摘 要
本文介绍的是设计张力控制系统的测试,尽量减小张力的变化,其中包括流体动 力占用肌肉手臂,流体蓄电池肌肉。首先,确定该模型和现有张紧系统。之后,在模 拟上进行理论的分析。仿真结果表明,电线由于速度的变化产生的长度变化的导致循 环紧张波动。该模型的张力传感器验证了预测。成功设计的关键是消除张力的变化。 我们建议增加一项线平机,其中包括一个蓄电池和拉紧装置,取代传统的气缸与流体 供电肌肉累加器。仿真结果表明,新的原型系统几乎增加了一倍的绕线速度和承受的 张力波动的能力。

关键词:张力控制,绕线机,矩形线圈

一.引言 每年在澳大利亚要制造数以千计的变压器,连同电厂、变电站和电力线路,配电 变压器为全国的商业及住宅提供电能。变压器制造涉及绕组线圈生产。这些线圈通常 由一对铜线在匝数之间夹上的绝缘纸层制成。它们通常是圆形或长方形。 在线圈绕组上必须保持一致的张力。 线圈的形状对所采用的由拉紧产生的张力产 生重大影响。对于一个圆形线圈的张力不会变化显着,但矩形线圈则不同。作为一个 矩形线圈,在送丝线圈上加快速度,减速的线圈会缠绕在机轴上。如图 1 所示,这个 速度的变化是由不断变化的线的长度导致。在圆线圈的情况下这不会有问题,因为在 线圈上导线的接触点是固定的。

图 1:速度的变化导致绕组上线长度变化 在机器上的导线和不同的主轴负荷紧张的结果各不相同, 导致过度的力的变化和 机械振动。这反过来可能会导致变化中的线圈电线交叉。当这些问题出现,纠正起来 时很费时间的。此外,工厂的产能线圈,在工厂的生产能力线圈是在工厂的总体能力 的制约因素,因此任何对线圈的输出中断都会影响到全厂。当今市场上普通线材的张 紧设置,是运行在约 5 米/秒到 30 米/秒之间。我们通常的绕线速度超过 10 米/秒, 公司的目标是 0.45 毫米至 4 毫米的线达到至少 20 米/秒的速度。 本文进一步考察了张力的波动问题, 并且在高速的绕线矩形线圈取得一致的张力 关系。在下面的部分问题的作了说明,为现有的可用技术做了综述。 二.背景 如图 2 所示,现有的卷绕系统使用感受到张紧垫,阀芯的电线被安装到其住房垂 直并且该线是通过导丝、导轮,然后到绕线机。张力的控制室通过的固定或松开钳子 来实现。

图 2:现有电线的安装和张力的设置 毛毡垫是最简单,最常用的线张力控制的方法之一。 图 2 照片显示主要组成部分和工作原理。 上面的配置使用克钳套用挤压力量的感 觉垫。该线是穿过感觉垫,因此应用的感觉垫一些力也适用于电线。在操作中,运动 线路迟缓或张力的创建,对牙釉质的感觉垫丝摩擦表面的摩擦。机器操作线程的电线 通过指导和滑轮和调整锁模力手动和直观地表现出来。其优点是:简单,随时可用, 便宜, 适应任何运行速度。 缺点也是显而易见的。 垫磨损很快, 导致紧张局势的损失, 该作用力仅和一般的速度无关,必须加强和更换频繁,直观的张力设置不允许良好的 控制和没有线轴形状补偿。 三.模型识别 导线从线轴穿过的张力装置,通过机器,并上矩形线圈。该系统简化,如图 1 所 示的只是一个固定的馈送点,那里的张力被应用,旋转矩形代表筒子或线圈。 理想的运行速度为 1000 转。给出了一个线速 10 - 30 米/秒取决于在一特定时刻 线圈的大小。图3显示了由筒子长方形生产线速度的变化。

图 3:线速度的变化 图4显示了线加速度的变化,这也可以通过该行或图形的速度衍生斜坡看到。

图 4:线加速度变化 线路路径长度的变化,从固定的馈点到缠线点,如图 5 所示。

图 5:线长度的变化 四.原型系统设计 图6中的系统集成了一个相对较新的气动装置称为流体肌肉。 流体肌肉由无纺布 和柔性材料制造而成,在空气压力下运作,在膨胀的压力下向横向和纵向扩展。预置 压力决定的最高和最低的力量也将适用于特定的收缩。肌肉非常类似于传统的气缸, 除了它有一个非常快速的反应,并没有什么不同高度动态弹簧。它还行为紧张和不压 缩,可以适用于除传统的气缸相同直径的 10 倍以上的力量。肌肉控制舞蹈手臂的动 作,并采取了释放导线的力道。这种压力设置适应所需的电线一系列张力变化。

图 6:流体动力舞蹈手臂肌肉

图 7:流体动力蓄电池肌肉 肌肉的流体动力蓄电池原型系统如图7所示的气缸使用的蓄电池, 是与肌肉所取 代,操作大致是相同的。 信号以 mV 显示,张力范围大概在 75N 到 85N 之间,用于测试的线直径为 1.5mm, 在信号嘈杂的情况下,张力的变化可以清楚地观察到。 五.实验结果及分析 实验使用上述反应构建原型系统进行了观察。

流体技术舞蹈手臂肌肉:低速的手臂最初有反应,但在时间过长便急剧抽搐,如 预期的一样不均匀地运动。导线似乎比没有手臂肌肉震动更剧烈。第一层的绕组已经 从最初的地方向内约 300 毫米。在高速时手臂没有回应,只是均匀的立场振动。 流体肌肉蓄电池技术:动力蓄电池的肌肉试验得出了以下结果:在低速累加器根 本没有回应。变压力没有显着差异;在高速时累加器没有回应。由于没有从蓄电池整 个系统的振动响应,使电线和增加穿越振动。 在用张力传感器搜集数据之前,蓄电池如图8所示。最大和最小张力分别约为 62 N 和 46 N。

图 8:没有累加器的张力传感器的输出

图 9:有累加器的张力传感器的输出

张力传感器在使用时收集的累加器数据如图9所示。最高和最低张力分别约为 43 N 和 37 N。 六.结论 矩形线圈是配电变压器的重要组成部分。由于线圈形状,线圈的绕组线张力产生 波动。这些波动导致电线破损,线圈尺寸不一致,多余的机器磨损,限制对卷绕速度 和变压器故障。从我们现有张力系统的研究,虽然发现流体肌肉累加器是最合适的选 择, 但是不是非常满足我们的要求。 由于目前的张力系统, 不是一个合适的补偿接口, 决定向扁平丝机的基础上进行实验和仿真。因此,平线中使用的气瓶发生肌肉的机器 成为可行性建议。新的绕线机将增加几乎一倍当前卷绕速度,估计每台机器每年可节 省约 59100 美元。新的张力系统,可以达到到 500 N 的恒张力,而不会产生大量的热 量,从而克服了当前摩擦的相关问题。

参考文献
[1] Cary Stapleton, “Winding Machine Tension Control”, Dissertation, Faculty of Engineering and Surveying,University of southern Queensland, QLD, Australia, Dec.,2005 [2] K. Feldmann & D. Dobroschke, ‘Innovative approaches for optimising tension control’, International Coil Winding Journal 2004. [3] K. Feldmann & U. Wenger, ‘Optimization for wire tensioners’, Proceedings: Electrical Manufacturing & Coil Winding Association Conference . 2001. [4] T. Manning, ‘Tension control during the coil winding process’, Proceedings: Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Association Conference, Apr. 2005. [5] J. Stangroom, ‘Tension control - new approaches’, Wire Industry 59(697), 33–3, 1992. [6] Anne Angermann, Maik Aicher & Dierk Schroder, “Time-optimal tension control for processing plants with continuous moving webs”, 2000 IEEE Industry Applications Conference Proceedings, pp. 3505-3511, Vol 5, Oct. 8-12, 2000, Rome, Italy. [7] B. H. Freyer, I. K. Craig & P. C. Pistorius, “Gauge and tension control during the acceleration phase of a steckel hot rolling mill,” ISIJ International, Vol. 43, No. 10, pp. 1562-1571, Oct. 2003. [8] Brain Thomas Boulter, Y. Hou, Z. Gao & F. Jiang,“Active disturbance rejection control for web tension regulation and control,” 2001 IEEE Conference on Decision and Control Proceedings, Vol. 5, pp. 4974-4979,Dec. 4-7, 2001, Orlando, FL, USA

附件2 附件2:外文原文
Tension Control of a Winding Machine for Rectangular Coils

Peng Wen and Cary Stapleton Faculty of Engineering and Surveying University of Southern Queensland Toowoomba 4350, QLD, Australia Email: pengwen@usq.edu.au

Yan Li Department of Math and Computing University of Southern Queensland Toowoomba 4350, QLD, Australia Email: liyan@usq.edu.au

Abstract--This paper introduces the design and testing of tension control prototype systems to minimise these tension variations, which includes a fluidic muscle powered take up arm, a fluidic muscle wire accumulator and felt pad. First the model and their limitations for existing tensioning systems are identified. Then, they are theoretically analysed in simulations. The simulation results show that the acceleration and deceleration of the wire due to the changing wire path length causes a cyclic tension fluctuation. An online tension sensor verified the predictions of the model. The key for a successful design is to remove tension variations. We propose to add a wire flattening machine which includes an accumulator and tensioning device, and replace the conventional pneumatic cylinder powering the accumulator with a fluidic muscle. The simulation shows that the new prototype system almost doubles the winding speed with a tolerable tension fluctuation.

Keywords—Tension control, Winding Machine, Rectangular Coil

I.

INTRODUCTION

Thousands of transformers are manufactured each year in Australia. In conjunction with power stations, substations, and power lines, the distribution transformers provide power to both commercial and residential applications right across the country. The manufacture of transformers involves the production of windings or coils. These coils are generally made up of a number of turns of copper wire in between layers of insulation paper. They are usually either round or rectangular. During coil winding a consistent tension is required on the wire. The shape of the coil being wound has

a significant impact on the quality of the tension applied by the tensioner. For a round coil the tension does not vary significantly during one revolution, but a rectangular coil causes the wire tension to fluctuate. As a rectangular coil is being wound, the speed of the wire feeding onto the coil accelerates and decelerates as the coil turns on the winding machine shaft. This is shown in figure 1 below. This speed variation is due to the constantly changing wire path length. In the case of a round coil this is not a problem because the point of contact of the wire on the coil is fixed.

Figure 1: Acceleration due to changing wire path length during winding

The varying tension results in the loading on the machine traverse and main shaft to vary, leading to excessive forces and machine vibrations. This in turn can cause wire cross overs and variations in the coil. When these problems occur, it is a time consuming task to remedy. In addition, the coil production capacity of the plant is the limiting factor in the plant’s overall capacity, so any interruptions to the output of coils limits the whole factory. Common wire tensioning devices on the market today, only operate at around 5 m/s for heavy wire gauges and up to 30 m/s for very fine wire. Our regularly winds in excess of 10 m/s and is aiming to achieve at least 20 m/s for the entire wire range of 0.45 mm to 4 mm.. This paper further investigates the tension fluctuation problem and to achieve a consistent wire tension while winding a rectangular coil at high speed. In the following section issues of the winding processes are described, and the available techniques for tensing are reviewed.

II.

BACKGROUND

The existing winding system shown in figure 2 uses felt pads for tensioning. The spool of wire to be wound is mounted into its housing vertically and the wire is fed up through the wire guide and felt pads, over the guide pulley and then to the winding machine. The tension is varied by tightening or loosening the large g-clamp.

Figure 2: Existing wire mounting and tension setup

Felt pads are one of the simplest and most commonly usedwire tensioning methods. The photo in figure 2 shows the main components and principle of operation. The configuration shown above uses a g-clamp to apply a squeezing force to the felt pads. The wire is passed through the felt pads and hence some of the force applied to the felt pads is also applied to the wire. In operation, the wire travels through these felt pads and the retardation or tension force is created by the friction of the surface of the enamel coated wire rubbing on the felt pads. The machine operator threads the wire through the guides and pulleys and adjusts the clamping force manually and intuitively. The advantages are: simple and readily available; inexpensive; adaptive to any operating speed. The disadvantages are also obvious. The Pads wear out quickly leading to loss of tension, the applied force is only generally independent of speed, need to be tightened and replaced frequently, intuitive tension setting does not allow good quality control and no compensation for bobbin shape.

III.

MODEL IDENTIFICATION

The wire travels from the spool through the tensioning device, over the machine traverse, and onto the rectangular coil. The system was simplified as shown in figure 1 to just be a fixed feed point, where the tension is applied, and a rotating rectangle representing the bobbin or coil. The desired operating speed is 1000 RPM. This gives a wire speed of 10 - 30 m/s depending on the coil size at a particular instant in time. Figuer3 shows the variation of the wire velocity produced by the rectangular shape of the bobbin.

Figure 3: The wire velocity variation

Figure 4 shows the variation of the wire acceleration, which can also be seen by the slope of the line or derivative of the velocity graph.

Figure 4: The wire acceleration variation

The wire path length variation, from the fixed feed point to the wind on point, is shown in figure 5 below.

Figure 5: The wire length variation

IV.

PROTOTYPE SYSTEM DESIGN

The system in figure 6 incorporates a relatively new pneumatic device called a fluidic muscle. The muscle is made of a woven, flexible material and operates under air pressure. Under pressure it expands laterally and contracts longitudinally. A preset pressure determines the maximum and minimum forces it will apply for a specific contraction. The muscle is very similar to a conventional pneumatic cylinder, except it has a very fast response and is highly dynamic, not unlike a spring. It also acts in tension and not compression, and can apply 10 times more force than a conventional pneumatic cylinder of the same diameter. The muscle controls a dancing arm which moves to take up and release the slack in the wire. This pressure is set to accommodate the range of wire tensions required.

Figure 6: Fluidic muscle powered dancing arm

Figure 7: Fluidic muscle powered accumulator

The fluidic muscle powered accumulator prototype system is shown in figure 7, where the pneumatic cylinder used in the accumulator is replaced with a muscle, otherwise the operation is the same as outlined previously. While the signal was noisy, the tension variations can be clearly observed. The signal shown is in mV, which translates into a tension range of approximately 74 N to 83 N for the 1.5 mm wire used in the test.

V.

EXPERIMENT RESULT AND ANALYSIS

The tests were carried out to observe the response using the above constructed prototype system. Fluidic Muscle Powered Dancing Arm: At low speed the arm responded initially but operated in long sharp jerks, not smooth side to side movements as expected. The wire appeared to vibrate more with the dancing arm, than without. At the end of winding one layer the resting position of the arm moved from its initial position inward approximately 300 mm. At high speed the arm did not respond, but just vibrated about a mean position. Fluidic Muscle Powered Accumulator: The trial of a large muscle powered accumulator gave the following results:At low speed the accumulator did not appear to respond at all. Varying the pressure made no significant difference, other than pull the wire through the felt pads. At high speed the accumulator did not respond. With no response from the accumulator the whole system vibrated, making the wire and traverse vibrations increase. The tension sensor data collected before the accumulator was used is shown in figure 8. The maximum and minimum tension is approximately 62 N and 46 N respectively.

Figure 8: Plot of tension sensor output without the accumulator

The tension sensor data collected when using the accumulator is shown in figure 9. The maximum and minimum tension is approximately 43 N and 37 N respectively.

Figure 9: Plot of tension sensor output with the accumulator

VI.

CONCLUSIONS

Rectangular coils are important part of distribution transformers. When winding these coils the wire tension fluctuates due to the coil shape. These fluctuations lead to wire breakages, inconsistent coil dimensions, excess machine wear, limit on the maximum winding speed and transformer failure in the field. From our comprehensive research into existing tensioning systems, none of them are ideally suited to fulfil our requirements although the fluidic muscle accumulator was found to be the most suitable option to develop as a compensator. As the current tensioning system, felt pads, are not suitable for interfacing with a compensator, the decision to add a wire flattening machine is made based on out experiment and simulation results. The intuitive process of setting the tension using a g-clamp does not allow consistency, therefore affecting quality control. Therefore, a wire flattening machine recommended with the feasibility of using the muscle in place of the cylinder. The new winding machine will almost double the current winding speed and result in a big annual saving estimated about $59,100 for each machine. The inclusion of a new tensioning system can apply up to 500 N constant tension force without generating a large amounts of heat, and overcomes the current problems

associated with friction. REFERENCES [1] Cary Stapleton, “Winding Machine Tension Control”, Dissertation, Faculty of Engineering and Surveying,University of southern Queensland, QLD, Australia, Dec.,2005 [2] K. Feldmann & D. Dobroschke, ‘Innovative approaches for optimising tension control’, International Coil Winding Journal 2004. [3] K. Feldmann & U. Wenger, ‘Optimization for wire tensioners’, Proceedings: Electrical Manufacturing & Coil Winding Association Conference . 2001. [4] T. Manning, ‘Tension control during the coil winding process’, Proceedings: Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Association Conference, Apr. 2005. [5] J. Stangroom, ‘Tension control - new approaches’, Wire Industry 59(697), 33–3, 1992. [6] Anne Angermann, Maik Aicher & Dierk Schroder, “Time-optimal tension control for processing plants with continuous moving webs”, 2000 IEEE Industry Applications Conference Proceedings, pp. 3505-3511, Vol 5, Oct. 8-12, 2000, Rome, Italy. [7] B. H. Freyer, I. K. Craig & P. C. Pistorius, “Gauge and tension control during the acceleration phase of a steckel hot rolling mill,” ISIJ International, Vol. 43, No. 10, pp. 1562-1571, Oct. 2003. [8] Brain Thomas Boulter, Y. Hou, Z. Gao & F. Jiang,“Active disturbance rejection control for web tension regulation and control,” 2001 IEEE Conference on Decision and Control Proceedings, Vol. 5, pp. 4974-4979,Dec. 4-7, 2001, Orlando, FL, USA


相关文章:
矩形绕线机的张力控制 外文翻译
矩形绕线机的张力控制 外文翻译_机械/仪表_工程科技_专业资料。外文资料翻译题 目: 矩形绕线机的张力控制 附件: 1.外文资料翻译译文;2.外文原文。 附件 1:外文...
外文翻译--矩形绕线机的张力控制
外文翻译--矩形绕线机的张力控制_工学_高等教育_教育专区 暂无评价|0人阅读|0次下载外文翻译--矩形绕线机的张力控制_工学_高等教育_教育专区。中文 2350 字,...
绕线机张力控制器—天机传动
绕线机张力控制器—天机传动_机械/仪表_工程科技_专业资料 暂无评价|0人阅读|0次下载|举报文档 绕线机张力控制器—天机传动_机械/仪表_工程科技_专业资料。绕线...
英文翻译
矩形绕线机的张力控制 外... 18页 免费 PLC技术中英文翻译_论文 25页 2下载券 电子信息工程英文翻译 16页 2下载券英​文​翻​译 ...
创业项目计划书-绕线机
矩形绕线机的张力控制 外文... 18页 免费 咖啡厅创业策划书 8页 免费 个人销售计划书 2页 免费 绕线机课题毕业设计 8页 免费如要投诉违规内容,请到百度文库...
CNC自动绕线机控制器说明书
CNC 自动绕线机控制器说明书 CNC 自动绕线机控制器说明书 说 (简 控制面板 明 CNC210-S 要版) 书 Key pads 按键[ 0]~[9] 用来输入数字 [步序设定] ...
自动绕线机设计
控制系统说明一、 概述 本控制系统设计用于自动绕线机系统。 自动绕线机系统拟采用电机控制旋转臂缠绕纺线的方式,主 要工作流程如下: 纺线由导轮传送至旋转臂前端...
摩擦式张力器是绕线机在绕线时产生可调性张力的关键部
摩擦式张力器是绕线机在绕线时产生可调性张力的关键部_其它考试_资格考试/认证...外文翻译---矩形绕线机的... 暂无评价 18页 ¥8.00 cnc绕线机控制器 2...
cnc绕线机控制器
cnc绕线机控制器_电子/电路_工程科技_专业资料。专业绕线机控制绕线机控制器 型号 : MH-cnc210M 品牌 :MINGHUI 无刷绕线机控制器 CNC-210M 1 应用场合:...
更多相关标签:
绕线机张力控制器 | 绕线机张力控制器原理 | 绕线机张力器 | 矩形绕线机 | 绕线机控制器 | 绕线机控制器苏州协普 | 高速绕线机控制系统 | cnc绕线机控制器 |