当前位置:首页 >> 机械/仪表 >>

hypermesh笔记原创


 ? F1 -- Hidden Line 隐藏线? F2 -- Delete 删除(删除任何对象都 用此命令)? F3 -- Replace 合并两个节点? F4 -- Distance 测量距离角 度等? F5 -- Mask 隐藏 ? F6 -- Element Edit 单元编辑(创建,合并, 分割单元等)? F7 -- Align Node 节点共线排列? F8 -- Create Node 创 建节点? F9 -- Line Edit 线编辑(非边界编辑 )? F10 -- Check Elem 单 元质量检查? F11 -- Quick Edit 快速几何编辑? F12 -- Automesh ?自动网格 划分 Shift+F1-F12, Ctrl+F1-F6

Opening and Saving Files - HM-1010
bumper_cen_mid1.hm
1. Access the Import tab in one of the following ways: ? ? From the Menu Bar, choose File, then Import From the standard toolbar, click Import ( )

(这里的 Import (

)是在已有模型上加另一个模型)

Importing and Repairing CAD - HM-2000

Importing and Repairing CAD - HM-2000
2. Go to the autocleanup panel. 查看拓扑情况,自动清理,可以删一些重复面,距离较小的自由边,修补结点问题 Step 3: Delete the surface that overhangs the round corner.(删重复面) From the Geometry menu, point to Delete and click Surfaces 或 Press F2(和点叉一样) Step 4: Create surfaces to fill large gaps in the model surfaces panel keep tangency(可以平滑过渡) Verify the auto create (free edges) check box is selected Step 5: Set the global geometry cleanup tolerance to .01.(设置全局清 理容差,这样其他地方的容差都是 0.01) Press O to go to the options panel Go to the geometry sub-panel In the cleanup tol = field, type 0.01 to stitch the surfaces with a gap less than 0.01. Step 8: Combine the remaining free edge pair using replace. Go to the replace sub-panel(quick edit 是交换点,这里交换边,效果差不 多) Step 9: Find and delete all duplicate surfaces. Access the Defeature panel

Simplifying Geometry - HM-2020
Step 4 (Optional): Review the quality of the mesh. Tool page, then select check elems(可以按要求检查,但不能编辑) 3. In the length field, type 1. 4. Click length to evaluate the minimum length. Many of the elements failing the length test are located around the fillets of this model Step 6: Remove all surface fillets in the clip. 1. Go to the defeature panel. In the min radius field, type 2.0.

Refining Topology to Achieve a Quality Mesh -HM-2030
Step 3: Review the mesh quality. 4. In the length field, type 1. Step 6: Add edges to the surfaces to control the mesh pattern 1. Access the surface edit Step 7: Add edges to the surfaces to control the mesh pattern. Go to the trim with surfs/planes sub-panel 2. In the with plane column, set the active selector to surfs. 3. Select the surfaces indicated in the following image. 4 If necessary, toggle the direction selector to N1, N2, and N3. Click N1 to make the selector active.(这里选两个点,不要选第三个) 6. Press F4 on the keyboard to enter the distance panel. 7. Go to the three nodes sub-panel.(找到圆心)作为第四步的 14.Click trim. Step 9: Remesh the part. Step 10: Review the mesh quality. 6. Access the automesh panel. 7. Go to the QI optimize sub-panel. 8. Verify that elem size = is set to 2.5 and the mesh type is set to mixed. 9. Click edit criteria. 10.In the Target element size field, type 2.500. 11.Click Apply and OK. 12.Select surfs >> displayed to select all displayed surfaces. 13.Click mesh. Note that the old mesh is replaced by the new mesh.

If there is a message saying, "There is a conflict between the user requested element size and quality criteria ideal element size," click 14.the button, Recomute quality criteria using size of 2.5. 15.Access the qualityindex panel by doing one of the following: From the Menu Bar, select Mesh, then Check, then Elements, then Quality Index From the main menu, select the 2D page, then select qualityindex

? ?

16.Go to pg1 and verify that the comp. QI is 0.01. This low value indicates that the mesh is good quality. The higher the number, the lower the mesh quality.

Creating and Editing Line Data - HM-2040
Step 1: Create a component collector to geometry From the main menu, access the Geom page and click nodes Go to the type in sub-panel. Press f to fit the model to the model to the screen Step 3: Display the node IDs. Pick the Tool page and click numbers to access the Numbers panel Step 6: Create a line. select the Geom page, then select lines Step 7: Duplicate and translate lines. select the Tool page, then select translate Step 11: Duplicate and reflect an arc. select the Tool page then select reflect Step 12: Create two tangent lines. Go to the Lines panel, at tangents sub-panel. Step 16: Create a surface square on an X-Y plane. select the 2D page, then select planes Go to the square sub-panel Switch from mesh, keep surf to surface only Step 17: Create a line that connects two parallel lines on an X-Y plane. Access the Lines panel. Go to the at intersection sub-panel. Use the lines with plane column Step 19: Extend a line to a surface edge Go to the Line Edit panel. Toggle from distance = to to:. Step 22: Remove all temp nodes. select the Geom page, then select temp nodes

Creating Surfaces from Elements - HM-2050
Step 2: Obtain surfaces from elements. 1. From the Geom page, click surfaces, and select the from FE sub-panel. Step 3: Capture features with plot elements. From the surfaces panel, FE sub-panel, click the features button to 1. access the features panel. This is a shortcut to this panel. You can also find features panel in the Tool page by selecting the features sub-panel. 5. Select the advanced analysis check box. This option performs further analysis on the features created based 6. on the angle and combines and extends them to create closed loops. 3. From the features panel, select the edit sub-panel. 9. Generate the surfaces using the surfaces panel, from FE sub-panel. (先生成单元曲面特征, 然后修改曲面特征, 然后再通过修改好的特征生成曲面, 这样比直接不修改生成的好)

Creating and Editing Solid Geometry - HM-2060
Step 2: Create solid geometry from the bounding surfaces. From the Geom page, enter the solids panel. Step 3: Create a solid geometry cylinder using primitives. Go to the cylinder/cone sub-panel. Toggle full cone to full cylinder. Step 4: Subtract the cylinder’s volume from the rest of the part From the Geom page, go to solid edit 2. Go to the boolean sub-panel. 3. Verify that operation type: is set to simple (combine all). 4. Set operation: to A-B (remove B from A). Step 5: Split the solid geometry using bounding lines.(如果不选择延伸, 可以不闭合,但是必须确定一个平面,可以一次选择实体,多次切线) You should still be in the solid edit panel. 1. Go to the trim with lines sub-panel. Step 6: Split the solid geometry using a cut line.(注意利用切换视图工 具,是用中键确定) Step 7: Merge solids together.(合并之后不再有分割线) Step 8: Split the solid geometry with a user-defined plane.(只要三点确 定一平面就行) 4. Set the plane selector to N1, N2, N3. With N1 active, press and hold the left mouse button, and move the mouse 5. cursor over one of the two edges shown in the following image. The edge should highlight.

Step 9: Split the solid geometry with a swept line.(选择一个实体,选择 扫掠线,选择轴,那扫掠线就沿着轴向切割实体) Step 10: Split the solid geometry with a principal plane.(z 轴确定 XY 平面,随便确定一基点就确定了平面的位置) 3. Switch the plane selector from N1, N2, N3 to z-axis. Step 11: Split the solid geometry by creating surfaces inside the solids.(需要到 surfaces 先创建一个曲面,注意不要勾选自动,否则难选上线, 再回到实体编辑选择刚创建的面) From the Geom page, go to surfaces Go to the spline/filler sub-panel. Deactivate auto create(free edge only) and keep tangency options Select the five lines shown in the following image: Step 12: Suppress extraneous edges on the part.(压缩冒出来的边) Enter the edge edit panel. Go to the (un)suppress sub-panel. Select lines >> by geoms.(因为之前创建编辑过的线有些可能冒出来了, 所以要压缩) With the solids entity selector active, select the four solids shown in the following image. (创建实体的八种方法)

Geometry and Mesh Editing Using the Quick Edit Panel - HM-2070
select the 2D page, then select automesh Verify that the size and bias sub-panel is selected. Verify that elements to surf comp is selected.(注意选择的面板,网格大小 设为 0.1) Step 2: Simplify the geometry by removing unnecessary holes. 1. From the main menu, select the Geom page, and click quick edit. For unsplit surf:, activate line(s).(不分割曲面面板,将不需要的孔去 .2 除,用填充的话会有共享边出现,而且网格质量不好) Step 3: Modify geometry around remaining small holes For the split surf-line function, activate node. (分割小孔的时候,先把周围修好,再修内部) Step 4: Trim a washer layer into the surface around each of the four holes. In the offset value field next to washer split, enter 0.05.(偏移值越大, 垫片越大) (调整密度,先调外部垫片再调内部,最后调周围) Step 5: Adjust the mesh around the large holes on the side surfaces. Use the split surf-line(可以用其他面板生成线辅助,然后再调整密度)这里可 以不调,先修剪好,然后再退到 auto mesh 进行编辑,可以改类型,调的更好 Step 7: Adjust the mesh on the mounting flange.

split surf-line adjust density(对于那些交叉的调不了的网格,可以用 faces edit 中的 untrim 调试)交叉的也可以用 quick edit 中的 split surf-nod 来调

Creating 1-D Elements - HM-3000
Step 2: Create 1-D bar elements. select the 1D page, then select bars Go to the bar2 sub-panel. 3. Click ax = and enter the value 0. 4. Click ay = and enter the value 0. 5. Click az = and enter the value 0. These are the values for the bar offset. 6. Click property = and select property1. A property is now assigned to the element. 7. Click pins a = and enter the value 0. 8. Click pins b = and enter the value 0. These are the values for the degrees of freedom Click the switch below update and select components from the pop-up 9. menu. 10.After x comp =, enter the value 1. 11.After y comp =, enter the value 1. 12.After z comp =, enter the value 1. The local y-axis is now specified.(这里 x\y\z 不能都为 0) 13.Click node A and select the lower node in the graphics area. 14.Click node B and select the upper node in the graphics area. The two-noded bar element is created. Step 3: Create 1-D elements along a line. 1. Go to the line mesh panel. 2. Verify that the entity selector is set to lines.. 3. Select a line on the model. 4. Verify that the segment is whole line option is set. 5. Set element config: to rigid. 6. Click mesh. The element density panel now appears. 7. Click set segment to make it the active selector. 8. In the elem density = field, enter 20. 9. Click set all. 10.Click return twice to access the main menu.

Step 4: Create 1-D elements from the feature in the model. Use the Model browser to turn off all of the geometry in the model. Tool page, then select features 4. Click the Comps button and pick the feature_elements component. 5. Click select to complete the selection. 6. In the feature angle = field, enter 30. 7. Select the ignore normals check box. 8. Verify that create: is set to plot elements. 9. Click features. The plot elements are created. Meshing without Surfaces - HM-3110 Step 2: Create a concentric circle around a hole on the top face using the scale panel.(创建同心圆) Tool page and go to the scale panel Click uniform and enter 2.0 for the scale factor. (这个是放大的倍数) 3. Press F4 to go to the distance panel. 4. Go to the three nodes sub-panel. (选三点找到圆心) 9. Switch the entity type to lines. 10.In the graphics area, select the circle. 11.Click lines >> duplicate >> original comp. 12.Click the origin: node selector to make it active. 13.Select the temporary node you created at the circle’s center. 14.Click scale +. A new circle is created, which is concentric with the original Step 3: Create a radial mesh between each of the concentric circles using the spline panel. select the 2D page and go to the spline panel(然后再把其他的顶面创建, 注意选三个外圆)shift+F2 可以删除临时结点 Step 5: Mesh the back face of the bracket using the line drag panel. select the 2D page and enter the line drag panel 2. Go to the drag geoms sub-panel. 3. Switch the drag: entity type from node list to line list. Select the line that is on the perimeter of the existing mesh and 4. adjacent to the bracket’s back (选择一条拉伸的边) 5. Click the along: line list selector to make it active. 6. Select one of the two lines defining the back face and perpendicular

to the selected line to drag. (选一条路径,即那条垂直的边) Step 6: Mesh the bottom face of the bracket using the ruled panel (如果想要删除重复图形的某一部分,可以先把不删除的隐藏起来) 注意有时候平面创建了图形但是渲染方式不一样的话,可能看不到图形,这时需 要切换渲染方式 select the 2D page and enter the ruled panel Click node list and select by path. Switch the lower entity type to line list. (用结点路径选择拉伸的面,用线选择另一端 Step 7: Mesh the rib using the skin panel. select the 2D page and enter the skin panel With the line list selector active, select any two of the three lines defining the rib. (注意不要选三条) 2-D Mesh in Curved - HM-3120 Step 2: Set the mesh parameters and create the mesh. . In min elem size = field, type 15.000. (这里就是 element size,如果设的太小会出错,比如说变黑) (或者进入 edge deviation 或 surfaces deviation 里面有 min elem size 设置,这里注意两个 面板即使设置同样的数值,他们得出的形状和质量都不一样) 5. Toggle to elems to surf comp. Select surfs > >by collector >> use size from the extended entity 6. selection menu. Step 3: Set the chordal deviation parameters. 2. Access the edge deviation sub-panel. 3. Click min elem size = and type 1.000. Cycle through the parameter settings by pressing the TAB key after typing in a value. Step 4: Create the mesh. Step 5: Set the chordal deviation parameters and create the mesh. 1. Set max angle = to 20.000. 2. Select surfs >> by collector >> angle ctrl. 3. Click select. 4. Click mesh to create the mesh on the surfaces. Step 6: Set the chordal deviation parameters and create the mesh. 1. Set max elem size = to 30.000. 2. Select surfs >> by collector >> max size ctrl. 3. Click select. 4. Click mesh to create the mesh. (设置最大的单元越大则生成的网格单元越少,设置最小的单元越大,有可能使 生成的网格越少,不是一定变少)

QI Mesh Creation - HM-3130 Step 2: Working with node and element quality optimization. Within the qualityindex panel, there are functions that allow the user to select individual nodes or elements, and then alter the position or shape of the node/element to optimize the element quality for the surrounding elements. The element qualities are optimized according to the settings in the qualityindex panel. These features are very useful for improving element qualities in local areas of the mesh. (在 qualityindex 面板,有让用户选择不同节点或元素的功能,然后改变元素节 点的位置或形状/优化周围元素质量。 元素是根据在 qualityindex 面板品质优化 设置决定的。这些特点对于提高网格区域的元素质量非常有用。) 2D page, then select qualityindex 2. Experiment with the node optimize function. select nodes of elements that are highlighted red, since these have the worst quality. You should see each node move as it is selected, improving the surrounding mesh quality. (选择结点优化, 特别是那些红色的结点) Notice what happens to the value of the comp. Q.I. It should improve as you select more nodes. 3. Experiment with the element optimize function. In particular, select elements that are highlighted red, since these have the worst quality. You should usually see the shape of the element change as it is selected, improving the surrounding mesh quality. Step 3: Resetting the part by remeshing. select the 2D page, then automesh Go to the size and bias 2. sub-panel. 4. Make sure the panel has the following settings: ? The check-box for previous settings is activated. ? The meshing mode is set to automatic. (这里应该是用到之前的调整) Step 4: Using QI optimization smoothing. select 2D page, then select smooth 1. Access the smooth panel in one of the following ways: ? From the Menu Bar, select Mesh, then Cleanup Elements, then Smooth ? On the main menu, select 2D page, then select smooth 2. Go to the plates sub-panel. 3. Select elems >> displayed. Switch the algorithm to QI optimization. (By default, the button 4. should be set to autodecide.) 6. Click smooth. Before HyperMesh has run the routine, you should see a message asking to

recompute using a new QI mesh size value. 7. Click continue. Controls Function The value you would like the quality index to be after the target smoothing operation. This value is not guaranteed from quality smoothing. The smooth operation will attempt to hit this index target. The check box for can be activated or not. If working with a large models, activate this box to ensure the smoothing time limit routine does not take more time than you want to allow. The smooth panel evaluates the angle between the normals of two adjacent elements. If this angle is equal to or greater feature than the value specified in this field, it will not allow the angle nodes shared by the elements to move. Allows you to select and use a criteria file for your Q.I. use currentsettings. If a criteria file is specified, leave this option criteria blank. The other toggle option is single optimization step. Using the recursive optimization procedure allows the automesher to take more than one pass in generating the best quality mesh it can. However, this can take longer than single recursive optimization step, so you might want to use single optimizationoptimization step for larger models(递归,可能用很长时间, procedure 所以有时你想用一次性的) Step 5: Using the QI settings in the automesh panel. 1. Access the automesh panel. 2. Go to the QI Optimize sub-panel. 3. Select the surface in the graphics area. 4. Make sure the panel has the following settings: ? The elem size= field has a value of 18. ? The mesh type: is set to quads. Like the smooth panel, the QI optimized meshing mode of the automesh panel has some controls of which you should be aware. They are, however, not needed in this tutorial. Controls Function

use current criteria Allows you to select and use a criteria file for in QI panel your Q.I. settings. If a criteria file is specified, leave this option blank. Smooth across common Determines whether nodes generated on a surface edges edge can be moved off the surface edge when the algorithm smoothes the mesh

feature angle

The smooth panel evaluates the angle between the normals of two adjacent elements. If this angle is equal to or greater than the value specified in this field, it will not allow the nodes shared by the elements to move. Allows Mesher to surrounding mesh. mesh without affecting

Break connectivity

Use the qualityindex panel to check the quality index of the mesh to compare it to the previous mesh: Meshing a Model Using Shrink Wrap - HM-3150 Step 2: Create a loose shell shrink wrap mesh in the loose_gap component. 3. Click Mesh, then Create, then Shrink Wrap Mesh. 4. Make sure the loose sub-panel is active. 5. Select the component in the graphics area. 6. For element size, enter 4. 7. Click mesh to create the shrink wrap. . Expand the Component folder in the Model browser. 9. Hide the surfaces component in the Model browser. 10.Click return to exit the panel. Step 4: Create a loose shell shrink wrap mesh in the loose component 4. Make sure the loose sub-panel is active. 5. Select the component in the graphics area. 6. For element size, enter 4. Step 5: Create a tight shell shrink wrap in the tight_shell component. Step 6: Create a tight solid shrink wrap in the tight_solid component Right-click the tight_solid component in the Model browser and click 2. Make Current. 3. Activate the generate solid mesh option. (用 loose 生成的壳元素比用 tight 的少) 4. Click comps and select the block component. 5. Change the minimum jacobian to 1. 6. Click mesh to create the mesh. Tetrameshing - HM-3200 Step 2: Use the volume tetra mesher and equilateral triangles to create a tetra mesh for the cover. On the 3D page, click the tetramesh sub-panel Go to the volume tetra sub-panel

Verify that 2D: is set to trias and 3D: is set to tetras. These control the type of element that will be created for the surface mesh and solid mesh of the part. . Activate the option, use curvature. Verify that the use curvature and use proximity options are not active . Additional parameters appear. The option, use curvature, causes more elements to be created along areas of high surface curvature. Thus, curved areas such as fillets will have more and smaller elements, which capture those features with higher resolution. Step 4: Use the volume tetra mesher to create a tetra mesh with more elements along curved surfaces. 2. Activate the option, use curvature. Additional parameters appear. The option, use curvature, causes more elements to be created along areas of high surface curvature. Thus, curved areas such as fillets will have more and smaller elements, which capture those features with higher resolution.(这个面板可以使圆角处有更多更小 的单元,使得这些地方的网格划分更清晰,但是没有圆角的地方,比如说面和面的 交界处还是一样) Step 5: Use the volume tetra mesher to create a tetra mesh with more elements around small features. 2. Activate the use proximity option. The use proximity option causes the mesh to be refined in areas where surfaces are smaller. The result is a nice transition from small elements on small surfaces to larger elements on larger, adjacent surfaces. Inspect the mesh pattern that the volume tetra mesher created. Compare it to the previous meshes you created and note the differences. More elements were created around surfaces with small angles as indicated 5. in the following image. (这个选项可以使小的曲面或单元很好的过渡到大的曲面或单元,过渡的地方产 生更多的较小的单元) Step 6: Prepare the display to tetra mesh the hub component using the standard tetra mesher. 4. Turn on the display for the hub and tetras components for elements. There are tria shell elements in the hub component. Currently, there are no elements in the tetras component. (这里只是比较用 tetra mesher.划分的网格) Step 7 (Optional): Review the connectivity and quality of the tria mesh to validate its integrity for the standard tetra mesher. From the main menu, select the Tool page and the edges panel. 3. Click find edges. A message in the status bar should state, "No edges found. Selected elements may enclose a volume." This is desired as the tetra mesher requires a closed volume of shell

elements.(这是所想要的四面体测量所需的封闭的壳单元体积) From the main menu, select the Tool page and the check elems panel. 6. Verify that you are in the 2-d sub-panel. 7. Identify elements having an aspect ratio greater than 5. Aspect ratio is the ratio of the longest edge of an element to its shortest edge. This check helps you to identify sliver elements. All of the hub’s shell elements pass the check; all of the elements have an aspect ratio less than 5. (检验纵横比大于 5 的单元,检测的所有都通过, 说明所有的单元纵横比都小于 5) 8. Identify tria elements having an angle less than 20. (trias: min angle) This check also helps you to identify sliver elements. All the hub’s shell elements pass the check; all the elements have angles greater than 20. The surface mesh is suitable for creating a tetra mesh. Step 8: Create a tetra mesh for the hub using the standard tetra mesher(这 里要先有网格才能生成六面体网格,之前是空心的,生成之后是实心的) With the comps selector active under select trias/quads to tetramesh, 4. select one of the hub shell elements from the graphics area. By default, HyperMesh will swap the diagonal for any pair of surface triads that will result in a better tetra mesh quality. If you would rather keep the diagonal, see sub-step 5. (Optional) To keep the diagonal as is, switch no fixed trias/quads to fixed trias/quads and select comps.(第四步和第五步没什么好像没什么 5. 联系,使用 fixed trias/quads 得到的网格单元少一点) 6. Click mesh to generate the tetrahedral elements. Step 9: Check the quality of the hub’s tetra elements. 2. Access the check elems panel. 3. Go to the 3-d sub-panel. 4. Identify the smallest element length among the displayed elements. If the minimum length is acceptable for a target element size of 5.0, then no further action is necessary. 6. Identify elements having a tet collapse smaller than 0.3. (检查网格崩塌小于 0.3,值是 1 表明用可能的最大体积完美的形成一个单元,值 是 0 表明完全崩塌的单元没有体积,设定的值越大,失败的单元越多,即接近理想 的单元少,值是 1 才是理想的)The tet collapse criteria is a normalized volume check for tetrahedral elements. A value of 1 indicates a perfectly formed element with maximum possible volume. A value of 0 indicates a completely collapsed element with no volume. The status bar indicates that three elements have a tetra collapse smaller than 0.3. (HypeMesh 通过一下步骤来确定四面体单元的不规则度:首先在四面 体的四个节点中任取一个并计算该节点到与其相对的单元的距离, 然后计算与其 相对的单元的面积的平方根值,用得到的距离除以平方根值。在四个节点上会得 到一个最小值,将其最小值用 1.24 规一化然后显示出来。如果四面体的形状太

差,这个值接近 0.0,如果是理想的,这个值是 1.0) Step 10: Isolate the element with the tetra collapse smaller than 0.3 and find the elements surrounding it.(把崩塌小于 0,3 的四面体单元隔离开) 1. With 0.3 still specified for tet collapse, click tet collapse again. 2. Click save failed. The element that failed the tetra collapse check is saved in the user mark, and can be retrieved in any panel using the extended selection menu. 3. Click return to exit to the main menu. 4. Access the mask panel in one of the following ways:

From the display toolbar, select Mask ( ? ? Press F5 on your keyboard.

).

5. Set the entity selector to elems and select elems >> retrieve. (找到那些刚刚检查的保存过的不合格的单元)The element that was saved in the check elems panel is retrieved. 6. Select elems >> reverse.(反向,得到所有合格的单元) 7. Click mask to mask the elements.(将合格的单元隐藏,不合格的展示) Only the one tetra element that failed the tetra collapse check should be displayed. 8. Click return to exit to the main menu. On the display toolbar, click unmask adjacent ( )(找出不合格单元

9. 的临近单元). The layer of elements that is attached to the one displayed element is identified and displayed. ) two more times. 10.Click unmask adjacent ( The layer of elements that is attached to the displayed elements is identified and displayed. The functionality of unmask adjacent can be duplicated using the find panel, find attached sub-panel on the Tool page. Step 11: Remesh the hub’s displayed tetra elements to improve their tetra collapse. 1. Access the tetramesh panel. 2. Go to the tetra remesh sub-panel. 3. Select elems >> displayed. 4. Click remesh to regenerate this area of the mesh. (把上面那些查找到的单元重新网格,以提高网格的质量,重新网格之后发现同样 的数值失败的单元变少了,即质量提高了)Note that the re-meshing operation works on only one group of elements (one volume) at a time. 5. Click return to exit to the main menu. 6. Access the check elems panel.

Click tet collapse to find out if the tetra collapse has improved for 7. the displayed elements. The message in the status bar should indicate that the minimum tetra collapse is larger than the value reported before the tetra elements were remeshed. 8. Click return to exit to the main menu. Summary A tetra mesh has been created for both parts in the file. Different procedures for tetra meshing were used. Either method can be used to mesh parts, depending on the needs of the analysis. Also, the tetra remesh function was used to show how to quickly fix the quality of tetra elements.(一个四面体网格已经在文件中创建了两个部分.四面体网格划分使用 了不同的程序. 根据需求分析任何一种方法可以用来网格部分, 同时,四面体网 格划分功能是用来显示如何快速修复四面体单元的质量。) Creating a Hex-Penta Mesh using Surfaces - HM-3210 Step 2: Mesh the top surface of the base, including the L-shaped surface. In the Model browser right-click base and select Make Current(这个功能 是指将所有的创建元素等操作放在 base 上,如果放在其他地方,就是创建在其他 地方) From the 2D page enter the automesh panel. 7. For element size = specify 10. Step 3: Create layers of hex elements for the base 1. Go to the elem offset panel.(在 3D 面板) 2. Select the solid layers sub-panel. 3. With the elems selector active, select the elements on the base. 4. For number of layers = specify 5. 5. For total thickness = specify 25. 6. Click offset+. The hexa mesh is created(里面是实心的,即通过一个面使用偏移面板,设置好 层数和厚度就可以创建六面体网格). Step 4: Prepare the display for meshing the arm’s curved segment.(这 里先隐藏 base 部分 1. Show the arm_curve component in the Model browser. 2. Press the F5 key to go to the mask panel. 3. Select elements >> by config, and select the hex8 configuration. 4. Click select entities.(整个六面体网格只有创建的初始面没有被选择) All of the elements with a configuration of hex8 in the model are selected. 5. Select elements >> by config, and select the penta6 configuration. 6. Click select entities. All of the elements with a configuration of penta6 in the model are

selected. 7. Click mask to mask the elements. 8. Click return to return to the main menu. Step 5: Create a node at the center of the arm radius. 1. Press the F4 key to enter the distance panel. (记住快捷键,因为如果不用快捷键,你直接后退去选择其他面板,则之前选择的 东西就会消失不见,用快捷键则可以避免这种情况) Step 6: Create hexa elements in the curved portion of the arm using spin. 1. Set arm_curve as the current component using the Model browser. 2. Go to the spin panel. 3. Select the spin elems sub-panel. Using elems >> by window, select the plate elements within the L-shaped cross section of the arm.(选的过程中不要进行放大缩小,不用选的太精准, 点选择实体时它会自动捕捉,如果之前选过出现了一个框,不用理它,直接重 4. 新选一个,它会选用最近生成的那个) 5. Click select entities. 6. For angle = specify 90 degrees. 7. For the direction, select the x-axis (Y-Z plane). 8. For the base node (B), click the center node created above. 9. For on spin = specify 24.(选择层数,即整个旋转方向有 24 层网格) 24 layers of hex elements will be created when the plate elements are spun. 10.Click spin -.(遵循右手法则,创建的是实体) 11.Click return to return to the main menu. Step 7: Create faces on the hex elements. 1. Go to the faces panel. 2. With the entity selector set to comps, select the arm_curve component. 3. Click find faces. (选择零件,就可以在零件的表面创建面了) Step 9: Mesh the L-shaped set of surfaces between the arm_straight and boss components. (在面上创建网格) Step 10: Use linear solid to build the mesh between the two sets of shell elements. From the 3D page, go to linear solid For density = specify 12(这里密度数值是多少就是多少层) Step 12: Create a shell mesh on the bottom of the boss. Go to the automesh panel. Step 13: Project a node to the bottom face of the boss.(为后面 Step 14 中选点用,否则曲线上不知道选哪一点)

1. Go to the project: panel. 1. Go to the project: panel. 2. Select the to line sub-panel. 3. Select the node on the rightmost top vertex, as per the following image. 4. Click nodes >> duplicate. (复制一个点在曲线上) Step 14: Generate hexas for the boss using the solid map panel. From the 3D page, go to solid map 2. Go to the general sub-panel. Select source geom: (none)(这里不需要用几何体拉伸,用的是底部的网格 3. 单元). 4. Select along geom: mixed. 5. Under along geom: mixed, click lines to make it the active selector. 6. Select the line indicated in the following image(选择结点路径的方向). 7. Click node path to make it the active selector. Select nodes to define the exact location of the solid element layers, 8. as indicated in the following image. A total of 13 nodes should be selected, starting at the boss mesh, and then using all of the nodes along the edge of the arm_straight component, ending with the node projected to the top of the boss. (结点一般沿着线, 则单元会沿着点建立单元网格,点有多少,网格就有多少层,线可以不选,但不能 乱选,比如说不能选顶面的园曲线) Step 15 (optional): Check the connectivity of the model. 1. Go to the faces panel. 2. Click comps to go to a list of components. 3. Select every component from the list, or select comps >> all. Select the components to complete the selection and go back to the faces 4. panel. 5. Click find faces. 6. Turn off the geometry display of all components via the Model browser. 7. Turn off the element display of all components except ^faces. 8. Click return to exit the the panel. 9. On the Post page go to the hidden line panel. (F1 on the keyboard.) 10.Go to the cutting sub-panel. 11.Activate the xz plane and trim plane options.

12.Click fill plot. (先查找面,然后用隐藏线工具选平面,切割激活,然后得到按平面切割的模型,退 出后会自动恢复) The faces are now displayed with a plane cutting the model in half. This is so that the interior of the model can be viewed. Click near the cutting plane. Holding the left mouse button down, move 13.the mouse back and forth. The cutting plane moves through the model, allowing you to see if any face elements exist on the interior of the model. You should see that there are face elements interior to the model, between the boss and arm. You need to perform some corrections on the connectivity.(按住鼠标可以移动平面,你可以查看连接性) Step 16 (Optional): Correct the connectivity of the model. 1. Display elements for all components except for the ^faces component. 2. Display the elements of the solidmap component as transparent. 3. Go to the faces panel. 4. Select elems >> displayed. 5. Click preview equiv. Coincident nodes on the intersection between the arm and the boss are highlighted. Specify a slightly larger value for tolerance =, and click preview 6. equiv to identify more coincident nodes on the intersection. 7. Repeat 16.6 until all 60 coincident nodes have been found. 8. Click equivalence. The nodes are replaced to the location of the lowest node ID. 9. Switch all the components to the shaded visual mode. Step 17 (Optional): Recheck the connectivity of the model. Repeat Step 16 to make sure the model is now equivalenced. If you find errors, repeat Step 16. Creating a Hexahedral Mesh using the Solid Map Function - HM-3220 Step 2: Mesh the 1/8th sphere-shaped region. 3D page, go to solid map Go to the one volume sub-panel.(这个面板可以一个一个的网格分块的实 3. 体 4. Under along parameters:, set elem size= to 1. With the solid entity selector under volume to mesh active, select the 5. small cube-shaped solid, as shown in the following image. Step 3: Create a shell mesh with the automesh panel to control a mesh pattern.

?

From the Mesh menu, select Create, and click 2-D AutoMesh Press F12(这一步网格为后面做准备,如果不网格的话,第四步中网格实体调 整实体密度时就会将这个面的网格随便变化,做了这一步,就固定住了这一面 ? 的层数,那么它就会在其他地方调整以达到密度要求) Step 4: Mesh the solid volume on which the surface mesh was created in Step 3. Enter the solid map panel by clicking Mesh, then Create, then Solid 1. Map Mesh. 2. Go to the one volume sub-panel. 3. Select the volume shown in the following image. 4. Under along parameters:, toggle elem size= to density= and enter 10. 5. Click mesh. Rotate the part and note how the mesh pattern created with the automesh panel has been used for the solid elements.(前面两块先网格以控制其 6. 他实体块网格部分密度调整) Step 5: Mesh the remaining solid volumes. You should still be in the solid map panel. 1. Select one of the remaining unmeshed solid volumes. Make sure to select a solid adjacent to one that has already been meshed so that connectivity is maintained.(选择临近的实体以保证连接性) 2. Switch source type: to mixed. 3. Under along parameters:, toggle density= to elem size= and enter 1.5. 4. Click mesh. 5. Repeat until all solid volumes are meshed. 6. Click return to return to the main menu. Automated Solid Map Meshing The capability to automate the solid map meshing process is now available. Using the “Mappable” visualization mode in conjunction with the multi-solids feature will inform you that the solid(s) are ready for solid meshing. Using the multi-solids feature will allow for all solids within the model to be meshed in one step provided that they are mappable. In this section of the tutorial we will delete all the elements from the previous section. Use the Mappable visualization mode and solid mesh the part using multi-solids. 自动网格的能力去网格实体的程序现在是可用的. 使用“Mappable“可视化模 式 结 合 multi-solids 功 能 将 会 告 诉 你 , 实 体 已 经 准 备 实 体 网 格 。 利 用 multi-solids 特性将允许在这个模式之下的所有的固体被网格化,其中有一步 是 mappable 提供。 在本节教程中这一部分我们将会从以前的截面删除所有元素。 使用 Mappable 可视化模式和 multi-solids 实体网格。

Step 7: Delete the elements within the model. Step 8: Use the mappable visualization mode From the geometry visualization pull-down, ( ).

select

Mappable

You will notice that each solid is color coded, the color of the solid represents its mappable state. The goal is to ensure that each solid is either 1-directional or 3-directional mappable. The color of the mappable state can be found (and adjusted if necessary) within the Preferences > Color panel. (你会发现每一个坚实的是用不同颜色标注,这种颜色的固体代表其 mappable 状 态 。 其 目 的 是 确 保 每 一 个 坚 实 的 要 么 是 1-directional 或 3-directional mappable。 这种颜色的 mappable 态可以 (如果需要调整的话)在颜色面板中看到。 By mappable display control (solids) ? ignored map Default visualization for solids that require partitioning to become mappable. 默认的实体可视化为 需要分割成为 mappable 状态。 Visualization for solids that have been edited, but still require further partitioning to create mappable solids. 对固体已经可视化编辑,但仍需要进一步划分创造 mappable 实体。 Visualization for solids that can be mapped (for 3-D meshing) in one direction. 对固体可视化,并将这一模型 在一个方向映射(三维网格)。 Visualization for solids that can be mapped (for 3-D meshing) in three directions. 对固体可视化,并将这一 模型在三个方向映射(三维网格)。

?

not mappable

?

1 dir. map

?

3 dir. map

Once in the mappable visualization mode it is clear that there is one 3-directional mappable solid, the rest are 1-directional mappable. 一旦变成 mappable 可视化模式,很清楚的显示有一个 3-directional mappable 固体,其余的都是 1-directional mappable。 Step 9: Use the multi-solid feature to mesh the part. click Mesh, then Create, and Solid Map Mesh to open the solid map panel. (这里它会自动跳到 multi solid 面板)(第一次网格应该是生成三个方向的面, 第二次才是按单方向进行实体网格) The solids will be sequentially solid meshed. Once complete inspect the model and note that all the mesh within the solids is correctly equivalenced. 这个实体将会连续的进行实体网格。一旦完成检查模型并且值得注意的是,在实 体内的所有的网格也已经 equivalenced 了。

CFD Mesh - HM-3230 In this tutorial, you will learn to: Generate meshes for CFD applications (for example Fluent, StarCD) using the CFD mesh sub-panel 对 CFD 网格应用(如 Fluent,StarCD 零件) 使 ? 用 CFD 网格 sub-panel 进行网格 Generate boundary layer type meshes with an arbitrary number of layers and thickness distribution ?用任意数量的层和厚度分布产生边界层型网 ? 格 Specify / identify boundary regions for CFD simulations 为 CFD 模拟 指定/识别边界地区? Export a mesh with boundary regions for FLUENT 为 Fluent 用边界区域 导出网格

? ?

? Import the model into FLUENT CFD Mesh - HM-3230 Step 2: Load the CFD user profile. 1. From the top Menu Bar, select Preferences, then User Profiles…. 2. Select the radio button CFD. Inspect the surface elements that will be used to generate the volume 4. mesh. The boundary mesh can have any combination of tria/quad elements. You will generate boundary layers on all the surface elements contained in collector, wall. 4。检查将被用来产生体积网格的表面元素。 边界网格可以是具有任意三角形和四边形单元的组合。 你将产生在包含在收集里 面的所有单元曲面的表面边界层 Step 3: Check that all the elements in collectors wall, inlet, and outlets define a closed volume. From the Tool page, click edges, then select collectors wall, inlet 1. and outlets. 2. Click find edges. A message indicating that no edges were found will appear on the status bar. (说明他是封闭的) 3. Toggle the free edges to T-connections. 4. Click find edges. The status bar will display: "No T-connected edges were found." free edge 有两种情况:一 是真的自由边,这种情况不处理;二 是在单元内部, 那么单元不协调,说明网格有问题。你首先要确定这部分有哪些单元,为什么不 协调,尽量用最小的工作量解决。不用把单元全都删掉。T-connection 不一定 代表是错误的。我的理解就是 3 个单元相交,类似于 T 字形。T-connection 是 不一定代表有错误,比如你的结构中存在着 T 型结构,那 T-connection 是很正 常的,但是对于一般的体单元(四面或六面)它的整个结构是由一层外壳包括起

来的,内部不应该有什么搭界的结构,既 T-connection,所以,在生成体单元 时一定要检查 free edge 和 T connection,这样才确保整个模型内部的节点协调 性。 Step 4: Create the CFD Mesh. CFD 是计算流体动力学(Computational Fluid Dynamics)的简称。简单地说,CFD 相当于在计算机上做实验,用于模拟实际流 体的流动情况。形象点讲,它是讲我们在实验室所做的实验形象的地在计算机上 得以操作和实现相同的实验。 CFD 是伴随着计算机技术和数值计算技术发展起来的。 它的基本原理为,数值求解控制流体流动的微分方程,得到流体流动的流场在连 续空间上的离散分布,从而近似模拟流体流动情况。 From the Mesh menu, click Create, then tetramesh to open the Tetramesh 1. panel. 2. Click the CFD mesh sub-panel. 3. Leave the default smooth BL option unchanged. This option is strongly recommended for most cases because it produces boundary layers with more uniform thickness and better element quality. 强烈推荐在大多数情况使用这个选项,因为它产生边界层厚度均匀,更好更多元 素的质量。 4. Select the options to specify the boundary layer and tetrahedral core: ? number of layers = 5 ? first layer thickness = 0.5 growth rate= 1.1 (This non-dimensional factor controls the change in layer thickness from one layer to the next). 这无量纲的变化因素控制 从一层到下一个层的厚度 simple transition: ratio= 0.8 (This is a non-dimensional scaling factor that controls the relative height of the pyramids generated on top of the last quad face of all hexahedral BL elements). 这是一个 无量纲比例因子它控制所有 BL 六面体单元最顶部四方体面上生成的椎体相 对高度 ? The last two options control the tetrahedral core mesh. Optimize mesh quality is the tetrahedral mesh generation algorithm, and the growth rate specified is interpolate (this interpolates the tetrahedral element size from the size on the surface mesh (boundary of the tetrahedral core volume)). 最后两个选择控制四面体的核心网格。 优化网格质量是四面体网格生 成算法,并且增长速度是插补(从曲面网格(四面体核心体积的边界)插补四面体 单元的大小) The default simple transition uses one pyramid element to transition from a BL hexahedral’s quad face to the tetrahedral core mesh. The ratio is the relative thickness of the transition layer as compared with the average size of the elements. The larger this ratio the thicker is the

?

transition layer. In general a value in the range 0.3-0.8 works well. 默认的是简单的过渡,使用一个角锥体元素来实现从一个 BL 六面体方格表面到 四面体核心网格进行过渡。该比率相对过渡层的厚度与元素的平均尺寸相比。这 一比率较厚的是的过渡层。一般来说,值在范围 0.3 ~ -0.8 就很好了。 5. Select the type of tetrameshing algorithm. There are four options available; the first three options are described in the tetramesh panel documentation. ? tetra mesh normally ? optimize mesh speed ? optimize mesh quality ? boundary layer only 有四个可供选择,前面三种在 tetramesh 面板文件中描述。 ?正常的四面体网格 ?优化网格的速度 ?优化网格质量 ?只有边界层 The last option boundary layer only, is available to generate the boundary layer alone and stop before generating the tetrahedral core. This option modifies adjacent surface meshes to reflect changes introduced by the boundary layer thickness, and creates a collector named ^CFD_trias_for_tetramesh, that is used to generate the inner core tetrahedral mesh using the “tetra mesh” sub-panel. Collectors CFD_boundary_layer and CFD_tetramesh_core are automatically created if they do not exist. However, if these collectors exist they should be empty collectors. For most cases it is best to select the optimize mesh quality option. 最后的 boundary layer only 选项,对于在生成边界层和在四面体核心之前停止. 这个选项修改临近曲面网格,它通过边界的层的厚度来反应这个改变,并且给四 面体创建一个叫^CFD_trias 的收集,这通常用“tetra mesh” sub-panel.来生成内 部 四 面 体 网 格 . 如 果 他 们 不 存 在 , 那 么 收 集 CFD_boundary_layer and CFD_tetramesh_core 会 自 动 创 建 , 大 多 数 情 况 最 好 选 择 optimize mesh quality option. 6. Select the tetrahedral core growth rate, interpolate. This avoids the problem of generating tetrahedral elements that are too large at the center of the core mesh. 这就避免在该中心的核心网产生太大的四面体元素,在该中心的核心网。 7. Select all the elements/components that define the surface area on which you need to generate boundary layers. This selection is done in the float / fixed with boundary layer selector. (选择你想要创建的边界层, 这一步没有叫你操作) 8. Click comps and select collector, wall.

9. Select all the elements/components that define the surface area on which you want to generate boundary layers. This selection is done with the float w/o boundary layer selector. (这一步也是叫你选择想要生成边 界层的曲面,没有叫你操作) 10. Click comps. 11. Select collectors: inlet and outlets. 12. Verify that the switch below the float w/o boundary layer selector is set to remesh. This means that the meshes in the zones defined by collectors inlet and outlets will be remeshed after being deformed by the boundary layer growth from adjacent surface areas. 这意味着被收集定义的网格区域在从临近 曲面 区域生成的边界层变形后将会重新网格划分 13. Click mesh to create the CFD mesh. When this task is finished, two collectors are automatically created: CFD_boundary_layer(边界的六面体网格) and CFD_Tetramesh_core(内部的六面 体网格).

Step 5: Mask some of the mesh to view the interior elements and boundary layers. 1. You can mask the mesh by using the shortcut key F5, and select elements to be masked. Following is a snapshot. Observe the excellent mesh quality produced.

Step 6: Generate boundary regions to specify boundary conditions. In this section, define mesh surface regions used to specify boundary conditions in any CFD code ( FLUENT, StarCD, CFX, etc). For example, assume that you are going to export the mesh for FLUENT. You need to create three collectors to place the boundaries: inflow, outflow, wall. You have selected two new names that are not already in your HyperMesh database and at the same time are compatible with the prefixes required by FLUENT to recognize boundary types according to their names. You are going to reuse the surface mesh contained in collector wall because this mesh remained unchanged by the CFD mesh process as this component was specified as “fixed with boundary layer.” However, the surface areas associated with the original collectors inlet and outlets have been completely regenerated and you need to create new components that will be named inflow and outflow, respectively. 在 本 节 中 , 定 义 区 域 网 格 表 面 用 于 指 定 边 界 条 件 ( 在 任 何 CFD 技 术 进 行 流 畅,StarCD,CFX,等等)。例如,假设你打算为 FLUENT 导出网格。你需要创建三个 收集来放置边界 inflow, outflow, wall。您选择了两个还不在您的 HyperMesh 数据库的新名字, ,同时符合所要求的 FLUENT 的前缀根据他们的名字来识别边 界类型

你打算重用包含在收集 wall 里面的曲面网格,因为此网格在 CFD 网格的过程的过 程中仍然保持不变,因为该组件被指定为 “固定与边界层,可是表面区域与原收集 inlet and outlets 已经完全重新生成,你需要创建新组件,将被分别命名为 inflow and
outflow

Step 7: Organize the volume elements into a collector named fluid.
1. Rename collector CFD_Tetramesh_core as fluid. This collector will hold all the 3-D volume elements. Access the Tool page, organize panel to move all the elements from collector CFD_boundary_layer to collector fluid.(重命名,并将 CFD_boundary_layer 中的单元全部 2. 一如 fluid

Step 8: Create face elements for the collector fluid.
Access the Tool page, faces panel to automatically generate collector ^faces containing all the external faces of the elements in collector fluid. The same panel can be accessed from the Mesh menu by selecting Check, then Components, then Faces. 第八步:面对元素创造收集器流体。 访问这个页面,faces工具面板自动生成收集^faces中在fluid收集单元的所有外表面。

Step 9: Create two new collectors named inflow and outflow.
Create two new components named inflow and outflow. There is no need to specify a card image or material name.

Step 10: Organize the faces into the inflow and outflow collectors.
Now you are going to move some of the elements from collector ^faces to collectors inflow and outflow.


相关文章:
hypermesh学习笔记
hypermesh学习笔记_学习总结_总结/汇报_实用文档。hypermesh学习笔记 Hypermesh 学习笔记 1 一些常用的快捷键 F2 删除 F3 合并节点 F4 测量 F5 隐藏 F6 网格编辑 ...
13hypermesh 笔记总结
13hypermesh 笔记总结_机械/仪表_工程科技_专业资料。13hypermesh 笔记总结1.如何添加重力 + X0 D9 n3 T, O4 z" a collector-loadcols-name(自己输入名字)-...
hypermesh常见问题笔记
hypermesh常见问题笔记_工学_高等教育_教育专区。其实各种 CAE 前处理的一个共同之处就是通过拆分把一个复杂体拆成简单 体。这个思路一定要记住,不要上来就想在...
HyperMesh 10.0 学习笔记—Teelon
21 ii HyperMesh 10.0 学习笔记—Teelon ☆选择边线上的点选择时,按下鼠标左键不放,光标移动到边线上变成 即可在该边线上选择点。 后松开,所选的边线变成白色...
HyperMesh学习笔记_图文
HyperMesh学习笔记_机械/仪表_工程科技_专业资料。HyperMesh学习笔记 一、 CAD 模型导入 .stp 格式 二、 几何模型清理合并自由边(红色的线)---缝合: 步骤: 1....
hypermesh应用笔记
hypermesh应用笔记_机械/仪表_工程科技_专业资料。hypermesh应用笔记hypermesh 应用笔记在网上找到一些关于前处理功能强大的 hypermesh 有限元软件的应用心得, 希望与大家...
hypermesh 心得
20. .Hypermesh 笔记 CAE 2009-02-26 22:17:54 阅读 119 评论 0 字号:大中小 订阅 . 版本:hypermesh 8.0。 Hypermesh 中的 Card Image 相当于 ABAQUS 中...
hypermesh简易实用教程
hypermesh简易实用教程_互联网_IT/计算机_专业资料 暂无评价|0人阅读|0次下载|举报文档hypermesh简易实用教程_互联网_IT/计算机_专业资料。Hyper works 学习笔记 ...
hyperworks学习笔记_图文
hyperworks学习笔记_学习总结_总结/汇报_实用文档。hyperworks,mesh学习笔记 自己总结 HyperMesh 10.0 学习笔记—Teelon Shot cut F 合适窗口大小 D F10 display ...
hyperworks学习笔记
但是 w/o surf 就不一样了,它是与曲面无关的,而且最重要的是它并不使用 HyperMesh 的 automesh 功第 24 页共 30 页 Hyper works 学习笔记 能。 它有一...
更多相关标签: