当前位置:首页 >> 理化生 >>

高中生物人教版必修2知识点总结


生物必修(II)知识总结
第一章 第一节 遗传因子的发现 孟德尔的豌豆杂交实验(一)

一、相关概念 1、性状:是生物体形态、结构、生理和生化等各方面的特征。 2、相对性状:同种生物的同一性状的不同表现类型。 3、显性性状:在具有相对性状的亲本的杂交实验中,杂种一代(F1)表现出来的性状, 隐性性状:杂种一代(F1)未表现出来的性状。 4、性状分离:

指在杂种后代中,同时显现出显性性状和隐性性状的现象。 5、杂交:具有不同相对性状的亲本之间的交配或传粉 6、自交:具有相同基因型的个体之间的交配或传粉(自花传粉是其中的一种) 7、测交:用隐性性状(纯合体)的个体与未知基因型的个体进行交配或传粉,来测定 该未知个体能产生的配子类型和比例(基因型)的一种杂交方式。 8、纯合子:基因组成相同的个体; 杂合子:基因组成不同的个体。 9、分离定律:在生物体细胞中,控制同一性状的遗传因子成对存在的,不相融合,在 形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同配子中, 随配子遗传给后代。 二、孟德尔豌豆杂交实验(一对相对性状) P:高豌豆×矮豌豆 P: AA×aa ↓ ↓ F1: 高豌豆 F1: Aa ↓? ↓? F2:高豌豆 矮豌豆 F2:AA Aa aa 3 ︰ 1 1 ︰2 ︰1 三、对分离现象的解释(孟德尔提出的如下假说) 1、生物的性状是由遗传因子决定的。每个因子决定着一种性状,其中决定显现性状的 为显性遗传因子,用大写字母表示,决定隐性性状的为隐性遗传因子,用小写字母 表示。 2、体细胞中的遗传因子是成对存在的。 3、生物体在形成生殖细胞——配子时,成对的遗传因子彼此分离,分别进入不同的配 子中,配子中只含有每对遗传因子的一个。 4、受精时,雌雄配子的结合是随机的。

第二节

孟德尔的豌豆杂交实验(二)

一、相关概念 1、表现型:生物个体表现出来的性状。 2、基因型:与表现型有关的基因组成。 3、等位基因:位于一对同源染色体的相同位置,控制相对性状的基因。
第 1 页 共 17 页

非等位基因:包括非同源染色体上的基因及同源染色体的不同位置的基因。 4、自由组合定律:控制不同性状的遗传因子的分离和组合是互不干扰的,在形成配子 时,决定同一性状的遗传因子彼此分离,决定不同性状的遗传因子自由结合。 二、孟德尔豌豆杂交实验(二对相对性状) P: 黄圆×绿皱 P: AABB×aabb ↓ ↓ F1: 黄圆 F1: AaBb ↓? ↓? F2:黄圆 黄皱 绿圆 绿皱 F2:A_B_ A_bb aaB_ aabb 9 ︰ 3 ︰ 3 ︰ 1 9 ︰ 3 ︰ 3 ︰ 1 在 F2 代中: 4 种表现型: 两种亲本型:黄圆 9/16 绿皱 1/16 两种重组型:黄皱 3/16 绿皱 3/16 9 种基因型: 完全纯合子 AABB aabb AAbb aaBB 共 4 种×1/16 半纯合半杂合 AABb aaBb AaBB Aabb 共 4 种×2/16 完全杂合子 AaBb 共 1 种×4/16 ? [1909 年,丹麦生物学家约翰给孟德尔的“遗传因子”一词起名叫做基因,并提出了 表现型和基因型的概念。] 三、对自由组合现象的解释 孟德尔两对相对性状的杂交实验中,F1(YyRr)在产生配子时,每对遗传因子彼此分离, 不同对的遗传因子可以自由组合。F1 产生的雌配子和雄配子各有 4 种:YR、Yr、yR、yr, 数量比例是:1︰1︰1︰1。受精时,雌雄配子的结合是随机的,雌、雄配子结合的方式 有 16 种,遗传因子的结合形式有 9 种:YYRR、YYRr、YYrr、YyRR、YyRr、Yyrr、yyRR、 yyRr、yyrr。性状表现有 4 种:黄色圆粒、黄色皱粒、绿色圆粒、绿色皱粒,它们之间 的数量分比是 9︰3︰3︰1。 四、孟德尔实验成功的原因 1、正确选用实验材料: ①、豌豆是严格自花传粉的植物,而且是闭花受粉,自然状态下一般是纯种,用于人 工杂交实验,结果既可靠又易分析。 ②、具有易于区分的相对性状,实验结果易于观察和分析。 ③、花大,便于人工传粉。 2、采取了正确的实验方法:由一对相对性状到多对相对性状的研究 3、运用了科学的分析方法:数学统计学方法对结果进行分析 4、设计了科学的实验程序:假说—演绎法 观察分析——提出假说——演绎推理——实验验证

第二章 第一节

基因和染色体的关系 减数分裂和受精作用

一、基本概念 1、减数分裂:减数分裂是指有性生殖的生物在产生成熟生殖细胞时,进行的染色体数
第 2 页 共 17 页

目减半的细胞分裂。在减数分裂过程中,染色体只复制一次,而细胞分裂两次。 减数分裂的结果是,成熟生殖细胞中的染色体数目比原始生殖细胞的减少一半。 2、受精作用:受精作用是卵细胞和精子相互识别,融合成为受精卵的过程。 3、同源染色体:配对的两条染色体,形状和大小一般都相同,一条来自父方,一条来 自母方,叫做同源染色体。 4、联会:同源染色体两两配对的现象叫做联会。 5、四分体:联会后的每对同源染色体含有四条染色单体,叫做四分体。 二、有性生殖细胞的形成 1、部位:动物的精巢、卵巢;植物的花药、胚珠 2、有性生殖细胞(精子、卵细胞)的形成过程: ①、精子的形成 ②、卵细胞的形成 1 个精原细胞(2n) 1 个卵原细胞(2n) ↓间期:染色体复制 ↓ 间期:染色体复制 1 个初级精母细胞(2n) 1 个初级卵母细胞(2n) 前期:联会、四分体、交叉互换(2n) 前期:联会、四分体、交叉互换(2n) 中期:同源染色体排列在赤道板上(2n) 中期: (2n) 后期:配对的同源染色体分离(2n) 后期: (2n) 末期: 细胞质均等分裂 末期: 细胞质不均等分裂 (2n) 2 个次级精母细胞(n) 1 个次级卵母细胞+1 个极体(n) 前期: (n) 前期: (n) 中期: (n) 中期: (n) 后期:染色单体分开成为两组染色体(2n) 后期: (2n) 末期:细胞质均等分离(n) 末期: (n) 4 个精细胞(n) 1 个卵细胞(n) 2 个极体(n) ↓变形 +1 个极体(n) 4 个精子(n) 3、精子的形成与卵细胞形成的比较 比 较 项 目 不 同 点 相同 点 部 位 精巢 4 个精子 细胞质均等分裂 有变形过程 子细胞数量、名称 分裂形式 是否变形 精子的形成 卵巢 1 个卵细胞+3 个极体 细胞质不均等分裂 无变形过程 卵细胞的形成

染色体复制一次, 细胞分裂两次, 都有联会和四分体时期; 经过第一次分裂, 同源染色体分开,染色体数目减少一半;在第二次分裂的过程中,着丝点分 裂,最后形成精子和卵细胞的染色体数目比精原细胞和卵原细胞减少一半。 减Ⅰ分裂(初级精(卵)母细胞) 减Ⅱ分裂(次级精(卵)母细胞)

三、减数分裂过程中染色体、DNA 的变化 染色体 数量 间期 2n 前期 2n 中期 2n 后期 2n 前期 n 中期 2n 后期 n 末期 n

第 3 页 共 17 页

四、受精作用 1、受精作用的特点和意义: 特点:受精卵中的染色体数目又恢复到体细胞的数目,其中有一半的染色体来自精子 (父方) ,另一半来自卵细胞(母方) 。 精子的细胞核和卵细胞的细胞核相融合,使彼此染色体会合在一起,只有形成 受精卵,才能发育成新个体。 意义:减数分裂形成的配子多样性及精卵结合的随机性导致后代性状的多样性。有性 生殖过程可使同一双亲的后代呈现多样性,有利于生物在自然选择中进化。 2、减数分裂和受精作用的重要作用 减数分裂和受精作用对于维持每种生物前后代体细胞中染色体数目恒定,对生物遗传 和变异是十分重要的。 五、减数分裂和有丝分裂的比较 1、减数分裂和有丝分裂的异同点 比较项目 母细胞类型 细胞分裂次数 不 中期染色体着丝点 排列位置 着丝点分裂、染色 单体分开的时期 同源染色体行为 点 有无非同源染色体 的随机组合 子细胞染色体数目 变化 子细胞类型数量 相 同 点 意 义 1次 排列在赤道板上 后期 无联会、四分体,无同 源染色体分离,无染色 单体的交叉互换 无 不变 2 个体细胞 有丝分裂 体细胞(受精卵) 2次 第一次分裂:排在赤道板两侧;第 二次分裂:排在赤道板上。 第二次分裂的后期 有联会、四分体,有同源染色体分 离,有染色单体的交叉互换 有 减半 4 个精子或 1 个卵细胞和 3 个极体 减数分裂和受精作用维持了生 物前后代体细胞中染色体数目 的恒定性 减数分裂 精原细胞或卵原细胞



染色体都复制 1 次;出现纺锤体 使生物的亲代和子代之间 保持了遗传性状的稳定性

2、减数分裂和有丝分裂图象和曲线的比较
第 4 页 共 17 页

染色体

DNA

有丝分裂

减数分裂

减数分裂和有丝分裂图象的比 ? 有同源染色体的联会 较: 有同源 ? 四分体 染色体 ? 同 源 染 色 体 向 两 极 移 动 无上述现象 ? 无同源 染色体

减数分裂Ⅰ 有丝分裂 减数分裂Ⅱ

3、细胞分裂相的鉴别: 判断细胞图的三看原则:一看染色体数目、二看有无同源染色体、三看同源染色体是 否有行为(配对、分离或上下排列在赤道板两侧) ①、细胞质是否均等分裂:不均等分裂:减数分裂卵细胞的形成 均等分裂:有丝分裂、减数分裂精子的形成 ②、细胞中染色体数目:若为奇数:减数第二分裂(次级精母细胞、次级卵母细胞) 若为偶数:有丝分裂、减数第一分裂、减数第二分裂后期 ③、细胞中染色体的行为:联会、四分体现象:减数第一分裂前期(四分体时期) 有同源染色体:有丝分裂、减数第一分裂 无同源染色体:减数第二分裂 同源染色体的分离:减数第一分裂后期 姐妹染色单体的分离 一侧有同源染色体:减数第二分裂后期 一侧无同源染色体:有丝分裂后期

第二节

基因在染色体上

一、萨顿(美)假说 1、假说核心:基因由染色体携带从亲代传递给下一代。即基因就在染色体上。 2、研究方法:类比推理 3、原因证据:基因与染色体行为存在着明显的平行关系 ①、基因在杂交过程中保持完整性和独立性。染色体在配子形成和受精过程中,也有 相对稳定的形态结构。 ②、 在体细胞中基因成对存在, 染色体也是成对的。 在配子中只有成对基因中的一个, 同样,也只有成对的染色体中的一条。 ③、体细胞中成对的基因一个来自父方,一个来自母方。同源染色体也是如此。
第 5 页 共 17 页

④、非等位基因在形成配子时自由组合,非同源染色体在第一次减数分裂后期也是自 由组合。 二、基因在染色体上的实验证据 1、摩尔根(美)和他的学生发现了测定基因位于染色体上的相对位置的方法,并绘出 了第一个果蝇各种基因在染色体上相对位置图,说明基因在染色体上呈线性排列。 2、果蝇的一个体细胞中有多对染色体,其中 3 对是常染色体,1 对是性染色体,雄果 蝇的一对性染色体是异型的,用 XY 表示,雌果蝇一对性染色体是同型的,用 XX 表 示。 W W w W W 3、 果蝇眼色杂交实验: 红眼的雄果蝇基因型是 X Y, 红眼的雌果蝇基因型是 X X 或 X X , w w w 白眼的雄果蝇基因型是 X Y,白眼的雌果蝇基因型是 X X 。 W W w P: 红眼(♀) × 白眼(♂) P: XX × XY ↓ ↓ W w W F1: 红眼 F1: XX × XY ↓F1 雌雄交配 ↓ W W W w W w F2:红眼(♀、♂) 白眼(♂) F2: X X X X X Y X Y 三、孟德尔遗传定律的现代解释 1、 基因分离定律的实质是: 在杂合体的细胞中, 位于一对同源染色体上的 等位基因 , 具有一定的 独立性 ,在分裂形成配子的过程中, 等位基因 会随同源染色体分开 而分离,分别进入两个配子中,独立地随配子遗传给后代。 2、基因自由组合定律的实质是:位于非同源染色体上的 非等位基因 的分离或组合是 互不干扰的,在减数分裂过程中,同源染色体上的 等位基因 彼此分离的同时,非 同源染色体上的非等位基因自由组合。

第三节

伴性遗传

一、相关概念 1、伴性遗传:位于性染色体上的基因控制的性状在遗传上总是和性别相关联的现象。 2、家族系谱图:表示一个家系的图中,通常以正方形代表男性(?) ,圆形代表女性 (?) ,深色表示患者,以罗马数字(如 I、Ⅱ等)代表世代,以阿拉伯数字(如 1、 2 等)表示个体。 二、X 染色体隐性遗传 1、人类红绿色盲 a A ①、致病基因 X 正常基因:X a a a A A A A a ②、患者:男性 X Y 女性 X X 正常:男性 X Y 女性 X X X X (携带者) 2、伴 X 隐性遗传的遗传特点: ①、人群中发病人数男性患者多于女性患者。 ②、往往有隔代遗传现象 ③、具交叉遗传现象:男性→女性→男性(母病子必病) 三、X 染色体显性遗传 1、抗维生素 D 佝偻病 A a ①、致病基因 X 正常基因:X
第 6 页 共 17 页

②、患者:男性 X Y 女性 X X X X 正常:男性 X Y 女性 X X 2、伴 X 显性遗传的遗传特点: ①、人群中发病人数女性患者多于男性患者。 ②、具有连续遗传现象 ③、具交叉遗传现象:男性→女性→男性(父病女必病) 三、Y 染色体遗传 1、人类毛耳现象 2、Y 染色体遗传的遗传特点:基因位于 Y 染色体上,仅在男性个体中遗传 四、遗传病类型的鉴别 1、先判断基因的显、隐性: ①、父母无病,子女有病——隐性遗传(无中生有) ②、父母有病,子女无病——显性遗传(有中生无) 2、再判断致病基因的位置: ①、已知隐性遗传 父正女病——常、隐性遗传 母病儿正——常、隐性遗传 ②、已知显性遗传 父病女正——常、显性遗传 母正儿病——常、显性遗传 3、不能确定的判断: ①、代代之间具有连续性——可能为显性遗传 ②、患者无性别差异,男女各占 1/2——可能为常染色体遗传 ③、患者有明显性别差异 i、男性明显多于女性——可能为伴 X 隐性遗传 ii、女性明显多于男性——可能为伴 X 显性遗传 iii、男性全患病,女性全不患病——可能为伴 Y 遗传

A

A A

A a

a

a a

第三章 第一节

基因的本质 DNA 是主要的遗传物质

一、作为遗传物质所具备的特点 1、在细胞生长和繁殖过程中能够精确的自我复制; 2、能够指导蛋白质合成从而控制生物的性状和新陈代谢; 3、具有储存巨大数量遗传信息的潜在能力; 4、结构比较稳定,但在特殊情况下又能发生可遗传的变异。 二、确定遗传物质的历程 1、染色体是遗传物质的主要载体: ①、从物种特征看:真核生物的细胞中都有一定形态和数量的染色体; ②、从生殖过程看:生物体通过细胞有丝分裂、减数分裂和受精作用三个过程使染色 体在生物的传宗接代中保持一定的稳定性和连续性; ③、从染色体组成看:主要是 DNA 和蛋白质组成,DNA 在染色体里含量稳定; ④、从 DNA 的分布看:DNA 主要分布在细胞核里,少数分布在细胞质的线粒体、叶绿 体中。
第 7 页 共 17 页

2、DNA 是遗传物质的证据: ①、研究思路:把 DNA 和蛋白质分开,单独地、直接地去观察 DNA 或蛋白质的作用。 ②、DNA 是遗传物质的直接证据 i、肺炎双球菌转化实验 A、1928 年 格里菲思(美)实验 a、材料: S 型细菌、R 型细菌 。 菌落 S 型细菌 R 型细菌 表面光滑 表面粗糙 菌体 有荚膜 无荚膜 毒性 有 无

b、过程: ① R 型活细菌注入小鼠体内小鼠不死亡。 ② S 型活细菌注入小鼠体内小鼠死亡。 ③杀死后的 S 型细菌注入小鼠体内小鼠不死亡。 ④无毒性的 R 型细菌与加热杀死的 S 型细菌混合后注入小鼠体内,小鼠死亡。 c、结论:已加热杀死的 S 型细菌中必然含有某种促成这一转化的活性物质——转化因子 B、1944 年 艾弗里(英)实验 a、过程: ①S 型活细菌 DNA+ R 型细菌→R 和 S ②S 型活细菌多糖或脂类+ R 型细菌→R ③S 型活细菌 DNA+DNA 酶+ R 型细菌→R b、结论: DNA 是遗传物质。 ii、噬菌体侵染细菌实验:1952 年赫尔希和蔡斯(用) A、材料:噬菌体 B、方法:放射性同位素标记法 C、过程:吸附 → 注入 → 合成 → 组装 → 释放 D、结论: DNA 才是真正的遗传物质,蛋白质不是。 3、RNA 是遗传物质的证据: 三、大多数生物的遗传物质是 DNA,极少数生物的遗传物质是 RNA。DNA 是主要的遗传物 质。

第二节

DNA 分子的结构

一、相关概念 碱基互补配对原则:两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定 的规律:A(腺嘌呤)一定与 T(胸腺嘧啶)配对;G(鸟嘌呤)一定与 C(胞嘧啶) 配对。碱基之间的这种一一对应的关系,叫做碱基互补配对原则。 二、DNA 的结构 1、化学组成 ①、基本单位:脱氧核苷酸(4 种) ②、连接方式:通过磷酸二酯键聚合而成 2.空间结构 ①、由两条脱氧核苷酸长链反向平行盘旋而成的双螺旋结构。 ②、外侧:由脱氧核糖和磷酸交替连接构成基本骨架。
第 8 页 共 17 页

③、内侧:两条链上的碱基通过氢键连接形成碱基对。碱基配对遵循碱基互补配对原 则,即 A 一定要和 T 配对(氢键有 2 个),G 一定和 C 配对(氢键 3 个)。 三、根据碱基互补配对原则推导的数学公式 1、A=T;G=C; 2、 (A+G)/(T+C)= 1; 3、 (A+T)1=(T+A)2, (C+G)1=(G+C)2; 4、 (A+C)=(T+G)=(A+ G)=(T+ C)= DNA 碱基总数的 1/2。 5、如果(A+T)1/(C+G)1=a,那么(A+T)2/(C+G)2= a ; 6、如果(A+C)1/(G+T)1=b,那么(A+C)2/(G+T)2= 1/b ;

第三节

DNA 的复制

一、相关概念 1、DNA 复制:是以亲代 DNA 为模板合成子代 DNA 的过程。 2、DNA 半保留复制:新合成的 DNA 分子中,都保留了原 DNA 的一条链,像这种复制就 叫半保留复制。 二、DNA 的复制 1、场所:主要在细胞核 2、 时间: 细胞有丝分裂的间期和减数第一次分裂的间期, 是随着染色体的复制来完成的。 3、过程: ①、解旋:DNA 首先利用线粒体提供的能量,在解旋酶的作用下,把两条螺旋的双链 解开。 ②、合成子链:以解开的每一段母链为模板,以游离的四种脱氧核苷酸为原料,遵循 碱基互补配对原则,在有关酶的作用下,各自合成与母链互补的子链。 ③、形成子代 DNA:每一条子链与其对应的模板盘旋成双螺旋结构,从而形成 2 个与 亲代 DNA 完全相同的子代 DNA。 4、特点: ①、DNA 复制是一个边解旋边复制的过程。 ②、DNA 复制是一种(非连续性的)半保留复制。 5、条件: 模板:DNA 母链,原料:游离的脱氧核酸,能量:ATP,有关的酶:解旋酶、聚合酶等。 6、准确复制的原因: ①、DNA 分子独特的双螺旋结构提供精确的模板。 ②、通过碱基互补配对保证了复制准确无误。 7、功能:传递遗传信息 8、实质和意义: 实质:以两条单链为模板,合成两个与原来完全相同的 DNA 分子。 意义:DNA 分子通过复制,将遗传信息从亲代传给子代,从而保证了遗传信息的连续性。

第四节 基因是有遗传效应的 DNA 片段
一、相关概念 1、基因:基因是有遗传效应的 DNA 片段,是决定生物性状的遗传单位。
第 9 页 共 17 页

2、遗传信息:DNA 上的碱基排列顺序,不同的基因含有不同的遗传信息。 二、染色体、基因和遗传信息的关系 1、一条染色体上有 1 或 2 个 DNA 分子,一个 DNA 分子上有许多个基因,染色体是 DNA 的主要载体。 2、基因是有遗传效应的 DNA 片段,是决定生物性状的结构功能单位,基因在染色体上 呈现线形排列。 3、遗传信息是基因中的脱氧核苷酸的排列顺序,并不是 DNA 分子上所有脱氧核苷酸排 列序列。 4、每一个基因中可以含成百上千个核苷酸,但每个基因中的脱氧核苷酸的排列顺序是 特定的。 三、DNA 分子的特点 1、稳定性:DNA 分子双螺旋空间结构的相对稳定性 n 2、多样性:碱基对的排列顺序可以千变万化(4 ,n 为碱基对数) 3、特异性:每一个特定的 DNA 分子都有着特定的碱基对的排列顺序,即储存特定的遗 传信息。

第四章 第一节

基因的表达 基因指导蛋白质的合成

一、相关概念 1、转录:主要在细胞核中,以 DNA 的一条链为模板合成 RNA 的过程。 2、翻译:指游离在细胞质中的各种氨基酸,在核糖体上以 mRNA 为模板合成具有一定 氨基酸顺序的蛋白质的过程。 3、密码子:mRNA 上 3 个相邻的碱基决定 1 个氨基酸。每 3 个这样的碱基又称为 1 个密 码子。 4、反密码子:每个 tRNA 的 3 个碱基可与 mRNA 上的密码子互补配对,这 3 个碱基叫反 密码子。 二、转录 1、场所:细胞核 2、条件:模板(DNA 的 1 条链) 、原料(4 种游离的核糖核苷酸) 、酶(解旋酶)和能 量(ATP) 3、转录过程: ①、DNA 双链解开。 ②、游离的核糖核苷酸与模板 DNA 的一条链碱基互补配对,以氢键结合。 ③、新结合的核糖核苷酸连接在正在合成的 mRNA 分子上。 ④、合成的 mRNA 从 DNA 链上释放。而后,DNA 双链恢复。

? 4、信息的传递方向:DNA ????? mRNA
转录

5、产物:信使 RNA 三、翻译 1、场所:细胞质(核糖体)
第 10 页 共 17 页

2、条件:模板(mRNA) 、原料(20 种氨基酸) 、酶和能量(ATP) 3、翻译过程: ①、 mRNA 进入细胞质与核糖体结合。 携带甲硫氨酸的 tRNA 通过与碱基 AUG 互补配对, 进入第一个结合位点。 ②、携带另一个氨基酸的 tRNA 以同样的方式,进入第二个位点。 ③、甲硫氨酸与该氨基酸形成氢键,转移到占据第二个位点的 tRNA 上。 ④、核糖体读取下一个密码子,原占据第一个位点的 tRNA 离开核糖体,占据第二个 位点的 tRNA 进入第一个位点一个新的携带氨基酸的 tRNA 进入第二个位点继续肽 链合成,直到核糖体读取到 mRNA 的终止密码。 4、信息传递方向:mRNA ????? 蛋白质。 ?
翻译

5、产物:一条多肽链 ? [①一种密码子对应一种反密码子(tRNA 上),一种氨基酸可以被一种或多种密码子所 决定, ②密码子存在于 mRNA 上, 密码子种类有 64 种 (其中与氨基酸相对应密码子有 61 种, 终止密码子有 3 种) ③数量关系:DNA 上的碱基=2 倍 mRNA 上的碱基=6 倍的氨基酸]

第二节

基因对性状的控制

一、相关概念 中心法则(1957 年 克里克) :遗传信息可以从 DNA 流向 DNA,既 DNA 的自我复制; 也可以从 DNA 流向 RNA,进而流向蛋白质,即遗传信息的转录翻译。遗传信息可以从 RNA 到 RNA(即 RNA 的自我复制)也可以从 RNA 流向 DNA(即逆转录) 。

二、基因、蛋白质与性状的关系 1、基因通过控制酶的合成来控制生物物质代谢,进而来控制生物体的性状。 2、基因还能通过控制蛋白质的结构直接控制生物体的性状。 三、基因型与表现型的关系:表现型 = 基因型 + 环境 1、生物体的性状是由基因控制的,但也受环境因素的影响。 2、基因与基因;基因与基因产物;基因与环境之间多种因素存在复杂的相互作用,共 同地精细地调控生物体的性状。

第五章 第一节

基因突变及其他变异 基因突变和基因重组

一、相关概念 1、基因突变:DNA 分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变, 叫做基因突变。 2、 基因重组: 是指在生物体进行有性生殖的过程中, 控制不同性状的基因的重新组合。 二、基因突变
第 11 页 共 17 页

1、时期:细胞分裂的间期的 DNA 复制时 2、类型:自然突变、诱发突变(人工诱变) 3、特点: ①、普遍性 ②、随机性 ③、低频性 ④、有害性 ⑤、不定向性 4、原因: ①、内因:DNA 复制过程中,脱氧核苷酸的种类、数量和排列顺序发生改变 ②、外因:某些环境因素(物理原因、化学原因、生物因素) 。 5、意义:基因突变是新基因产生的途径;是生物变异的根本来源;是生物进化的原始 材料。 三、基因重组 1、时期:减数分裂第一次分裂的后期或四分体时期 2、类型(来源) : ①、基因的自由组合 ②、基因的交叉互换 3、意义:基因重组产生新的基因型,是生物变异的来源之一,也是生物多样性的重要 原因之一,对生物的进化也具有重要的意义。

第二节 染色体变异
一、相关概念 1、染色体组:细胞中的一组非同源染色体,在形态和功能上各不相同,携带着控制生 物发育的全部遗传信息,这样的一组染色体,叫染色体组。 2、二倍体:由受精卵发育而成,体细胞中含有两个染色体组的个体。 3、多倍体:由受精卵发育而成,体细胞中含有三个或三个以上染色体组的个体。 4、单倍体:由配子直接发育而成,体细胞中含有本物种配子染色体数目的个体。 二、染色体变异 1、染色体结构改变:会使染色体上的基因的数目或排列顺序发生改变,从而导致性状 的变异。 ①、染色体中某一片段缺失 ②、染色体中增加某一片段 ③、染色体某一片段移接到另一条非同源染色体上 ④、染色体中某一片段位置颠倒 2、染色体数目变异 ①、细胞内个别染色体的增加或减少 ②、细胞内染色体数目以染色体组的形式成倍的增加或减少。 三、二倍体、多倍体(染色体组数目 n = n 倍体) 1、二倍体 2、多倍体 ①、成因:有丝分裂的过程中,染色体完成复制,但不分开 ②、特点:茎秆粗壮,叶片、果实和种子都比较大,糖类和蛋白质等含有机物多。 ③、应用:人工诱导多倍体育种
第 12 页 共 17 页

原理:染色体变异 方法:秋水仙素处理萌发的种子或幼苗 ? [秋水仙素可以抑制纺锤体的形成,作用的时期在有丝分裂前期] 三、单倍体(染色体组数≥1) 1、成因:由配子发育而成 2、特点:单倍体植株长得弱小,而且高度不育,缩短育种年限,获得的后代能稳定遗传 3、应用:单倍体育种(在生产上常用于培育纯种) 原理:染色体变异 方法:花药离体培养,秋水仙素处理

四、基因重组、基因突变、染色体变异三种可遗传变异的比较 比较类 型 从本质 上看 发生时 期及原 因 基因重组 基因重组产生新的基 因型,使性状重新组 合 减 I 的后期由于四分 体相邻的非姊妹染色 单体的交叉互换;或 减 I 的后期非同源染 色体的自由组合 不同个体间杂交 有性生殖形成配子 基因突变 基因分子结构发生了 改变,产生了新的基 因,出现了新性状 染色体变异 染色体组成成倍增加或减 少,或个别染色体增加或 减少,或认识他内部结构 发生改变 有丝分裂中染色体不分离 形成多倍体;或减数分裂 时偶尔发生染色体不配对 不分离、分离延迟等原因 引起 外界条件的剧变和内部因 素的相互作用 利用单倍体育种缩短育种 年限;利用多倍体育种可 选育出优质高产的新品 种;利用非整倍性染色体 变异进行基因固定位研 究,实施染色体工程,选 育出新品种

细胞分裂间期 DNA 复 制时, 由于碱基互补配 对出现差错而引起 外界条件的剧变和内 部因素的相互作用

条件

意义

是生物变异的重要原 因之一,通过杂交育 种培育新的优良品种

是生物变异的根本来 源; 是生物进化的原始 材料。 通过诱变育种培 育新的优良品种

第三节

人类遗传病

一、相关概念 1、人类遗传病:通常是指由于遗传物质改变而引起的人类疾病,主要可以分为单基因 遗传病,多基因遗传病和染色体异常遗传病三大类。
第 13 页 共 17 页

2、单基因遗传病:受一对等位基因控制的遗传疾病。 3、多基因遗传病:受两对以上等位基因控制的人类遗传病。 4、染色体异常遗传病:由染色体异常引起的人类遗传病。 5、人类基因组计划(HGP) :是测定人类基因组的全部 DNA(22+X+Y)序列,解读其 中包含的遗传信息。 二、类型

三、特点 1、致病基因来自父母,因此其在胎儿的时候就已经表现出症状或处在潜在状态。 2、往往是终生具有的 3、常带有家族性,并以一定的比例出现于各成员中。 四、危害 1、危害人体健康 2、贻害子孙后代 3、增加了社会负担 五、人类遗传病的检测与预防 通过遗传咨询和产前诊断等手段,对遗传病进行检测和预防,在一定程度上能够有效 的预防遗传病的产生和发展。 1、遗传咨询(遗传商谈或遗传劝导) ①、医生对咨询对象进行身体检查,了解家庭病史,对是否患有某种疾病作出诊断 ②、分析遗传病的遗传方式 ③、推算出后代的再发风险率 ④、提出防治政策和建议 禁止近亲结婚:三代以及三代以内的直系和旁系血亲 原因:近亲之间携带相同隐性致病基因的概率较大。 2、遗传病的产前诊断 ①、内容:在胎儿出生前确定胎儿是否患有某种遗传病或先天性疾病 ②、方法:羊水检查、B 超检查、孕妇血细胞检查、胚盘绒毛细胞检查以及基因诊断 六、人类基因组计划及其意义 1、启动时间:1990 年(01 年 2 月草图公开,03 年圆满完成) 2、目的:是测定人类基因组的全部 DNA 序列,解读其中包含的遗传信息。 3、参与国家:6 个国家,美、德、英、法、日、中,我国承担了其中 1%的测序任务。
第 14 页 共 17 页

4、测序结果:人类基因组大约由 31.6 亿个碱基对组成,已发现的基因约为 3.0 万— 3.5 万个。 5、意义:对人类各种疾病尤其是遗传病的诊断和治疗具有划时代意义;对于进一步了 解基因表达的调控机制、细胞生长、分化和个体发育的机制以及生物的进化等也 具有重要的意义。

第六章 第一节

从杂交育种到基因工程 杂交育种与诱导育种
杂交育种 诱变育种 用理、化因素处理生物 多倍体育种 用秋水仙素处理萌 发的种子或幼苗 抑制细胞分裂中纺 锤体的形成,使染 色体的数目加倍后 不能形成两个细胞 单倍体育种 花药离体培养

四种育种比较 处 理

杂交 通过基因重组, 把 两个亲本的优良 性状组合在同一 个后代中, 从而产 生符合要求的新 类型

原 理

用人工方法诱发基因突 变,产生新性状,创造新 品种或新类型

诱导精子直接 成植株, 再用秋 水仙素加倍成 纯合子

优 缺 点

方法简单, 容易操 作, 不能创造新的 基因, 育种进程缓 慢,过程烦琐

能提高变异的频率,大副 度的改良某些性状,变异 性状较稳定,可加速育种 进程。 有利的少,需大量处理供 试材料,突变的方向难以 掌握,突变体难以集中多 个理想性状

器官较大,营养物 质含量高。 发育延迟,结实率 底。

自交后代不发 生性状分离, 可 缩短育种年限 (2 年) 方法复杂, 成活 率底

实 例

小麦高(易倒伏) 抗锈病的纯种与 青霉素经 X 射线、紫外线 矮茎 (抗倒伏) 易 照射及综合处理,培育出 染病的纯种进行 青霉素产量很高的菌种 杂交, 培育出矮茎 抗锈病小麦品种

三倍体无子西瓜、 八倍体小黑麦

抗病植株的育 成

第2节

基因工程及其应用

一、相关概念 基因工程:又叫做基因拼接技术或 DNA 重组技术。通俗地说,就是按照人们的意愿, 把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里, 定向地改造生物的遗传性状。 二、基因工程的内容 1、基因工程的工具: ①基因的“剪刀” :限制性核酸内切酶或限制酶
第 15 页 共 17 页

i、分布:主要在微生物中 ii、作用特点:具特异性,即识别特定的核苷酸序列,切割 DNA 分子特定切点 iii、结果:产生黏性末端(碱基互补配对) ②基因的“针线” :DNA 连接酶 i、连接部位:磷酸二酯键 ii、结果:将两个相同的黏性末端连接成完整的 DNA 分子 ③基因的“运载工具” :运载体 i、种类:质粒(常用的运载体) ,噬菌体和动植物病毒 ii、具备条件: a、能在宿主细胞内复制并稳定地保存; b、具有多个限制酶切点; c、具有某些标记基因。 iii、作用:将外源基因送入受体细胞中 2、操作的基本步骤: ①、提取目的基因 ②、目的基因与运载体结合(以质粒为运载体) ③、将目的基因导入受体细胞 ④、目的基因的检测和表达 三、基因工程的应用 1、基因工程与作物育种 如:抗虫基因作物的使用,不仅减少了农药的用量,大大降低了生产成本,且还减 少了农药对环境的污染 。 2、基因工程与药物研制 如:基因工程生产药品的优点是高效率、高质量、低成本。 四、转基因生物和转基因食品的安全性 1、安全的观点:转基因食品的构成与非转基因食品一样,都是由氨基酸、蛋白质和碳 水化合物组成的,从理论上分析是安全的,应该大范围推广。 2、不安全的观点:在一个简陋的实验室里,就能把艾滋病毒和感冒病毒组装在一起,使 艾滋病像感冒一样,大规模地传播,所以转基因生物和转基因食品的不安全,要严格地 控制。

第七章 第一节

现代生物进化理论 现代生物进化理论的由来

一、相关概念 自然选择:在生存斗争中,适者生存、不适者被淘汰的过程。自然选择是一个缓慢的 长期的历史过程。 二、拉马克(法)进化学说 基本观点:地球上所有的生物都不是神造的,而是由更古老的生物进化来的;生物是 由低等到高等逐渐进化的;生物的各种适应性特征的形成都是由于用进废退和获得性遗 传。用进废退和获得性遗传,这是生物不断进化的主要原因。 ? [拉马克是历史上第一个提出比较完整的进化学说的科学家]
第 16 页 共 17 页

三、达尔文(英)自然选择学说 1、主要内容: ①、过度繁殖:生物普遍具有很强的繁殖能力,能产生大量后代 ②、生存斗争: ③、遗传变异: ④、适者生存: 2、意义:自然选择学说能够科学地解释生物进化原因以及生物的多样性和适应性。 3、不足:不能科学的解释遗传和变异的本质,对生物进化的解释也局限在个体水平。

第二节

现代生物进化理论的主要内容

一、相关概念 1、种群:生活在一定区域内的同种生物的全部个体 2、种群基因库:一个种群中全部个体所含有的全部基因 3、基因频率:某个基因占全部等位基因的比率 4、物种:能够在自然状态下相互交配并且产生可育后代的一群生物。 7.隔离:不同种群的个体,在自然条件下基因不能自由交流的现象。常见的隔离有生 殖隔离和地理隔离。 8. 生殖隔离: 不同物种之间一般是不能相互交配的, 即使交配成功也不能产生可育后代 。 9.地理隔离:同一种生物由于地理上的障碍而分成不同的种群,使得种群间不能发生 基因交流的现象。 10.共同进化:指不同物种之间、生物与无机环境之间在相互影响中不断进化和发展。 二、现代生物进化理论的主要内容包括: 1、种群是生物进化的基本单位; 2、 突变和基因重组产生进化的原材料; ①、生物可遗传变异来源于基因突变、基因重组和染色体变异。基因突变和染色体变异 统称为突变。基因突变产生新的等位基因,就可能使种群的基因频率发生变化。②突变 和重组是随机、不定向的,只为进化提供了生物进化的原材料,不能决定生物进化方向。 3、自然选择决定生物进化的方向;在自然选择的作用下,种群的基因频率会发生定向 改变,导致生物朝着一定的方向不断进化。 4、 隔离导致新物种的形成 三、共同进化与生物多样性的形成 1、生物进化的历程(主要依据是化石) 地球上原始大气中是没有氧气的,因此,最早出现的生物都是厌氧(进行无氧呼 吸)的;最早的光合生物的出现,使得原始大气中有了氧气,这就为好氧生物的出 现创造了前提条件。由简单到复杂,由水生到陆生,由原核到真核,由单细胞到多 细胞生物,由无性生殖到有性生殖,由厌氧到需氧。 2、生物多样性的三个层次:基因多样性、物种多样性和生态系统多样性 生物多样性的形成的原因是由于长时间的共同进化。

第 17 页 共 17 页


相关文章:
高中生物必修二知识点总结(人教版复习提纲)期末必备
高中生物必修二知识点总结(人教版复习提纲)期末必备_生物学_自然科学_专业资料。高中生物必修二知识点总结(人教版复习提纲)期末必备 ...
高中生物人教版必修2知识点总结
高中生物人教版必修2知识点总结_理化生_高中教育_教育专区。生物必修(II)知识总结第一章 第一节 遗传因子的发现 孟德尔的豌豆杂交实验(一) 一、相关概念 1、性状...
高中生物 人教版必修二 第二章 知识点总结
高中生物 人教版必修二 第二章 知识点总结_高一理化生_理化生_高中教育_教育专区。第二章 基因和染色体的关系第一节 减数分裂 一、减数分裂的概念减数分裂(...
高一生物必修二知识点总结
高一生物必修二知识点总结姓名 第一章 遗传因子的发现 班级 1.基本概念: (1)性状——是生物体形态、结构、生理和生化等各方面的特征。 (2)相对性状——同种...
高中生物 人教版必修二 第三章 知识点总结
高中生物 人教版必修二 第三章 知识点总结_高一理化生_理化生_高中教育_教育专区。必修二 第三章 知识点归纳 必修二 知识点归纳班级: 姓名: 第三章第1节 1...
高中生物必修二知识点总结
高中生物必修二知识点总结_理化生_高中教育_教育专区。课堂笔记,修改后 必修2 第一章.遗传因子的发现 第 1 、2 节 孟德尔的豌豆杂交实验 一、相对性状 一些...
高中生物必修2 知识点总结
高中生物人教版必修2知识点... 17页 2财富值 高中生物知识点总结 必修2 7页 5财富值 高中生物必修1、2知识点总... 6页 2财富值 高中生物 知识点总结练习...
高中生物 人教版必修二 第四章 知识点总结
高中生物 人教版必修二 第四章 知识点总结_高一理化生_理化生_高中教育_教育...必修二 第四章 知识点归纳 必修二 知识点归纳班级: 姓名: 第四章第1节一、...
高中生物人教版必修2知识点总结
高中生物人教版必修2知识点总结_理化生_高中教育_教育专区。生物必修(II)知识总结第一章 第一节 遗传因子的发现 孟德尔的豌豆杂交实验(一) 一、相关概念 1、性状...
更多相关标签:
高中生物必修一知识点 | 高中生物必修三知识点 | 高中生物必修二知识点 | 高中生物必修3知识点 | 高中生物必修1知识点 | 高中人教版生物知识点 | 人教版高中生物必修一 | 高中生物人教版必修三 |