当前位置:首页 >> 农林牧渔 >>

重复测量设计


重复测量设计 1. 前面已经多处提到此设计. 现在对它作出正式定义: 重复测量设计指将一组或多组 被试者先后重复地施加不同的实验处理, 或在不同场合和时间点被测量至少两次的 情况. . 2. 重复测量设计大体有两类. 一类是对每个人在同一时间不同因子组合间测量; 另外 一类是对每个人在不同时间点上重复. 前者常见于裂区设计,而后者常见于经典试 验设计即包括前测,处理,一次或几次后测的情况. 后者比前者要多见. 3. 不论沿裂区方向还是沿时间点重复,个体内因子无一例外的都是重复测量因子.重复 测量设计的特点是一定有个体内因子但不一定有个体间因子.后者是不同处理组合 或不同个体组.而且即使有不同组群(例如男性和女性)但人人都经历重复测量而不 是一组接受重复测量另一组不接受. 4. 不含个体间因子的重复测量设计例子包括对一组顾客的购物偏好在三个月内重复测 量; 或对其三周内的生鲜食品消费量追踪研究; 或对其家庭购买保健品药物数目一 年内测量等. 5. 重复测量设计优点是 A. 每一个体作为自身的对照, 克服了个体间的变异。 分析时可更好地集中于处理效 应, 同时被试者间自身差异的问题不再存在. 也就是减少了一个差异来源 研究所需的个体相对较少, 因此更加 B. 重复测量设计的每一个体作为自身的对照, 经济. 6. 重复测量设计缺点是 滞留效应(Carry-over effect) 前面的处理效应有可能滞留到下一次的处理 潜隐效应(Latent effect) 前面的处理效应有可能激活原本以前不活跃的效应 学习效应(Learning effect) 由于逐步熟悉实验, 研究对象的反应能力有可能逐步得到了 提高. 7. 思考题: 我设计了两个劳工服务方案. 一个经由劳务公司,每人每周一次服务在上 海收费50,另一个经由私人,每人每次30元.前者可以报怨,可以随时辞退, 可以有安全性理赔(例如劳工偷窃等可以找公司赔钱).后者一切自己负担.我的目 的是看有多少人会选后者, 多少人会选前者.此时应该如何设计? 8. 面对这些问题也有办法.主要的是反向平衡(Counterbalancing)即变动不同因子水 平出现次序使得它们以同等机会以不同次序出现. 9. 反向平衡法则决定第一次排序的公式是 1, 2, n, 3, n-1, 4, n-2,…, 其中每个数 字对应一个处理水平. 例如有四个水平,则上式化为 1, 2, 4, 3. 有了第一次排序 则第二次排序只要在第一次基础上加 1. 故第二次出现次序为 2,3,1,4; 第三次是 3,4,2,1 等等.如果令 1=A, 2=B, 3=C, 4=D 则有四次排序如下 第一次测量 A B D C 第二次测量 B C A D 第三次测量 C D B A 第四次测量 D A C B
10.

每个被试须作多少次测试取决于试验需要和课题性质.一旦决定下来则会决定组内 变量水平数。 如果实验中没有组内变量, 则每个被试只需作一次测试;如果实验中有

一个组内变量,则测试的次数就是该组内变量的水平数;如果实验中的组内变量不 只一个,则测试次数就是实验中几个组内变量水平数的乘积. 8. 重复测量设计方差分析的统计前提 每个处理条件内的观察都是独立的; 1) 2) 每个处理条件内的总体分布是正态分布或多元正态分布; 3) 每个处理条件内方差同质; 每个被试者的多元观测值之间有相关. 4) 9. 本质上只有 1 个指标,为何要把测自不同时间点上的数据看成是多元的呢? 因为同 1 个体的数据重复测自同 1 个受试对象,它们之间往往有较高的相关性。这种相关性通 常会减少误差项变异, 从而使得 F 测验的分母变小, 其后果是 F 测验更易于到达显著 即使无效假设是正确的. 换句话说, 犯一类错误的概率加大了. 10. 重复测量方差分析要满足几个假设条件. Fisher 指出了这些条件但是直到 Box(1954) 才证明了这些条件的必要性并指出,若这些假设不能满足,则方差分析的 F 值是有 偏的,这会造成过多的拒绝本来是真的无效假设(即增加了 I 型错误的概率) 1. 第一条件是所谓复合对称性(Compound Symmetry). 后者意思是各对测量值之间的协 方差要相等. 这个具体见下表 J1 J2 J3 J4 2 J1 S Sij Sij Sij 2 J2 Sij S Sij Sij 2 J3 Sij Sij S Sij J4 Sij Sij Sij S2 2. 类似上述方差-协方差矩阵具有复合对称性, 也被称为 S 型矩阵. 该矩阵只能当加 性条件满足时才能成立. 如果个体和处理有互作则不太可能出现各个处理间协方差 相等的情况. 3. Box 在 1954 年证明在重复测量情况下 F 检验不具有理论自由度而是有分子分母 自由度各为 ε ( J ? 1) 和 ε ( J ? 1)(n j ? 1) .其中的 ε 上限=1. 其具体值取决于相关矩阵的 性质是否有复合对称性. 如果没有复合对称性则(J-1)> ε ( J ? 1) 且
(J-1)(n-1)> ε ( J ? 1)(n j ? 1) . 这时如果用通常 F 检验临界值势必偏小,导致 I 类错误增加. a. 为什么重复测量时 F 检验自由度是 J-1 和(J-1)(n-1)呢? 这里分子自由度好 理解即组数减 1. 分母乃因为重复测量时是用测量次数和个体内因子的互 作为误差项的. 4. Geisser 和 Greenhouse 在 1958 年发展了 Box 的发现,在裂区设计中证明 ε 下限是 1/(J-1), 故当 ε 不等于 1 时有分子自由度为 1/(J-1)*(J-1)=1, 分母自由度为 1/(J-1)*(J-1)(n-1)=n-1. 5. 后来证明复合对称性是充分条件但不是必要条件. 在 1970 年 Huynh 和 Feldt 证明 重复测量分析的一个必要和充分条件是所有成对测量值的差数方差相等. 这个就是 所谓的球形假设或循环假设(Circularity). 如该假设成立则无必要再对自由度进行调 整.

6.

注意复合对称性是指各个测量值各自围绕本身平均数的方差, 而球形假设则是对 成对测量值的差数方差而言的. 球形假设下的方差-协方差矩阵称为 H 矩阵. S 矩阵可 以视为 H 矩阵的特例. 凡是有复合对称性的方差-协方差必定也是球形的. 7. 为了有效地处理重复测量数据间的相关性, GLM 程序既可以用多元分析法又可 以用一元分析法, 后者资料必须满足特定类型的协方差矩阵, 称为 H 型协方差 (Huynh and Feldt 1970)。若资料具有这种类型的协方差矩阵, 则称此资料满足 Huynh-Feldt 条件(以下简称 H-F 条件)。资料是否满足此条件,可进行球性检验 (Sphericity test). 球性检验的基本原理用 Excel 表格很容易理解. 见”球形检验原理” 一表. 8. 9. 如果只有两次测量值则球形假设自然满足, 因为两次测量只可能有一个差数, 一 个差数方差. 10. 一般而言当你有两个以上重复测量值时球形假设很难以满足. 首先要了解重复测 量主要用于两个情况. 一个是长期调查(Longitudinal Studies)一个是包括前试到处理 到后试的经典试验. 前者在两次相邻测试点之间的现实性会高于相隔较远测试点(例 如第一个月和第二个月之间相关性会大于第一个月和第三个月之间), 后者则处理效 应不大可能在不同个体间有相似效应. 11. 如果球形假设不能满足, 用于调整复合不对称性的 Box 的 ε 也可以用来对非球形 ? 进行调整. 这个即为 ε , 它取值介于 1 和 1/J-1 之间. 越是接近 1 说明方差越同质. ? ? 12. F 检验的分子和分母自由度都要用 ε 进行调整. 因为 ε 值不可能大于 1, 所以调整 后的自由度不可能大于原来自由度, 相应的 F 临界值也要升高才能到达显著. ? 13. Huynh 和 Feldt 发现如果 ε >0.75 则自由度调整导致显著性测验太过保守即 II 类错 ~ ? 误概率上升. 所以他们推荐一种比较不那么保守的 ε , 记为 ε . 14. 有人建议下列三原则 ~ ? a. 如果 ε >0.75, 对自由度用 ε 进行调整; ? ? b. 如果 ε <0.75, 对自由度用 ε 进行调整; ? ? c. 如对 ε 毫不了解, 对自由度也用 ε 进行调整. 15. 上述自由度的调整属于单元方差分析法. 因为它还是把多个测量当成单一因变量 处理. 仅仅是对相应自由度进行调整. 另一种分析方法是把多次测量当成多个因变 量. 后者完全改变了分析思路. 不再需要测验球形假设是否满足. 而是通过独立正态 变量转换使得多次测量之间从相关变成独立关系. 那时 F 检验自由度无需调整.
16.

首先从什么是独立标准(Orthonormal)转换开始. 如果 C ' ΣC = τI 则说球形存在. 其 中 C 代表一个独立转换系数矩阵, 含有(J-1)*(J-1)个元素. 后者再经正态化处理. Σ 是群体方差-协方差矩阵, C’是 C 的转置. τ 代表一个常数, I 代表一个 0, 1 矩阵, 其中 主对角线上是 1, 非主对角线上全部是 0. 如果 τ 代表方差, 则 C ' ΣC = τI 意味着群体

方差在主对角线上而协方差全部是 0. 具体操作转换过程见”独立标准转换”一表. 17. 当然并不是所有多元方差分析都需要用标准正态转换. 有时可以用各个测量值之 间的差数进行模型分析. 后者有些象时间序列中的差分处理. 18. 不论何种转换其基本精神都是要把原先相关的测量值变成独立或近似独立. 至少 转换不会增加相关. 多元方差分析要假定多元正态分布, 而且被试者数目要大于处理水平. 但是后者 19.

不难满足. 否则 N-1<J 则方差-协方差矩阵不会是正定的(Positive Definite), 后者使得 无法求矩阵的倒数, 从而方程无解. 20. 究竟用单元还是多元方差分析并无绝对标准. 两者之间也无绝对优势. 但有一点 当方差是同质时单元方差分析比多元更有力量, 因为未经调整的自由度要大于多元 方差分析的 Hotelling’s T2 21. 如果变异大则有些小的效应可能会被单元方差分析所掩盖. 此时多元测验更有优 势. 22.

? ? 有两个调整系数,第一个是 Greenhouse-Geisser 调整系数 ε (G ? Gε ) ,计算公式为
? ε=
2 a 2 ( s kl ? s 2 ) 2 2 (a ? 1)[∑ ∑ ( s kl ) 2 ? ( 2a )(∑ ( s k2 ) 2 ) + a 2 ( s 2 ) 2 ] k l k

2 2 式中的 s kl 是协方差矩阵中的第 k 行第 l 列元素, 2 = (∑∑ s kl ) / a 2 是所有元素的总 s k l

2 2 2 2 平均值, s kk = (∑ sll ) / a 2 是主对角线元素的平均值, s k = (∑ s kl ) / a 是第 k 行的平均 l l

? 值。 ε 的取值在 1.0 与 1/(a-1)之间。 33. 第 2 个系数是 Huynh-Feldt 调整系数 ε ( H ? Fε ) 。研究表明,当 ε 真值在 0.7 以上时, ? 用 ε 进行自由度调整后的统计学结论偏于保守,故 Huynh 和 Feldt 提出用平均调整 值 ε 值进行调整。 ε 值的计算公式为

ε =

? ng ( a ? 1)ε ? 2 ? ( a ? 1)[(n ? 1) g ? ( a ? 1)ε ]

式中中的 g 是对受试对象的某种特征(如年龄或性别)进行分组的组数,n 是每组 的观察例数。当 ε >1.0 时,取 ε =1.0。 23. 为了确定这个特殊总体,必须进行平均值之间的多重比较。但此处不能采用一般的 多重比较方法,因为那些方法都是建立在独立样本基础上的。这里可采用配对样本 的差值 t 检验,因为配对样本就是重复测量试验中一种最简单的对比研究设计。


相关文章:
重复测量设计的方差分析spss例析
重复测量设计的方差分析spss例析_人文社科_专业资料。重复测量的方差分析重复测量方差分析的基本概述:被试对象在接受不同处理后,对同一因变量 (测试指标)在不同时...
重复测量与区组设计方差分解上的异同
http://wenku.baidu.com/view/71bdd98b84868762c aaed5cd.html 再论重复测量设计与区组设计方差分解上的异同再论重复测量设计与区组设计方差分解上的异同 结束了...
重复测量设计简单效应分析SPSS syntax语法
重复测量设计简单效应分析SPSS syntax语法_教育学/心理学_人文社科_专业资料。GLM A1 A2 A3 A4 B1 B2 B3 B4 /WSFACTOR=treatment 2 Polynomial time 4 ...
重复测量设计
第十二章 重复测量设计... 52页 免费重​复​测​量​设​计 暂无评价|0人阅读|0次下载|举报文档今日推荐 67份文档 九...
第17章 重复测量设计和交叉设计资料的分析案例辨析及参...
第17 章 重复测量设计和交叉设计资料的分析 案例辨析及参考答案 案例 17-1 为了研究某两个减肥药(分别称为 A 药和 B 药)的减肥疗效,收集 80 名 -2 女性...
现代统计学与SAS应用:有重复测量设计及其资料的统计分
现代统计学与 SAS 应用:有重复测量设计及其资料的统计分析具有重复测量的设计,即在给予某种处理后,在几富同的时间点上从同 1 个受试对象(或样品)身上重复 获得...
多组设计和准实验
因子设计可以同时包括多个自变量,每个自变量也可以有多个取值。但是,随着 自变量的增加,实验组的数目也要相应增加。 重复测量设计: 不是对不同组的受试者施以不...
SPSS重复测量方差分析的应用
SPSS重复测量方差分析的应用_院校资料_高等教育_教育专区。企业销售策略改进计划中...a. 设计 : 截距 + 市场编号 + 方案 + 市场编号 * 方案 主体内设计 : ...
量表开发与设计的步骤
量表开发与设计的步骤_信息与通信_工程科技_专业资料。量表开发与验证 2009-05-...内在一致性评价——信度是指对同一对象进行重复测量时,所得结果的一致程度。可...
混合效应线性模型与单因素方差分析在重复测量数据中的...
【关键词】 重复测量;混合效应线性模型;单因素方差 分析 ; 摘要: 目的:通过...(1) x 为已知设计矩阵,β 为固定效应参数构成的未知向量,ε 是未知的随机...
更多相关标签: