当前位置:首页 >> 数学 >>

2.1.3分层抽样公开课课件


复习回顾 抽签法
第一步,将总体中的N个个体编号(号码从1到N); 并把号码写在形状、大小相 同的号签上; 第二步,将号签放在一个不透明 容器中,并搅拌均匀; 第三步,每次抽出1个号签,连续抽取n次,就得到一 个容量为n的样本

随机数表法 第一步,将总体中的所有个体编号(每个号码位数 一致); 第二步,在随机数表中任选一个数作为起始数 第三步,

从选定的数开始按一定方向读数,去掉 大于总体编号和或重复的号码,直到取满为止

系统抽样的步骤:
第一步,编号分段(即分成几个部分),要确定分段 的间隔k,当N/n是整数时,k= N/n;当N/n不是整数时, 通过从总体中剔除一些个体使剩下的总体中个体的个 数N'被n整除,这时k=N'/n

第二步,在第一段用简单随机抽样确定起始 的个体编号 l 第三步,按照事先确定的规则抽取样本(通常是将加 上间隔k,得到第2个编号l+k,第3个编号l+2k,这样 继续下去,直到获取整个样本)

问题: 某校小礼堂举行心理讲座,有 500人参加听课,坐满小礼堂,现从中选 取25名同学了解有关情况,选取怎样的 抽样方式更为合适.
分析:宜采用系统抽样的方法,请写出具体的操作步骤。

1 把500人的座位号按从小到大的顺序平均分成 25段, 每段为20 2 把第一段的1~20号写成标签,用抽签的方法从 中抽出第一个号码.设这个号码为x 3 号码为 x 、 x+10、 x+20、…… 、x +490作为 样本

探究?
假设某地区有 高中生2400人,初 近视率% 80 中生10900人,小 学生11000人,此 60 地教育部门为了了 解本地区中小学的 40 近视情况及其形成 20 原因,要从本地区 的中小学生中抽取 0 1%的学生进行调 小学 初中 高中 你认为哪些因素影响学生视 查,你认为应当怎 力?抽样要考虑和因素? 样抽取样本?

阅读课本P60-61思考如下问题:
分层抽样的概念? 分层抽样有哪些特点? 分层抽样的步骤?

1.分层抽样的概念
在抽样时,将总体分成 互不交叉 的层,然后按照 一定的比例 , 从各层 独立 地抽取一定数量的个 体,将各层取出的个体合在一起作为样本,这种 抽样方法是一种分层抽样.

特点:
分层抽样是当总体由 差异明显 的几部分组成时采用 的抽样方法,进行分层抽样时应注意以下几点: (1)分层时将相似的个体归入一类,即为一层,分 层要求每层的个体互不交叉,即遵循不重复不遗漏 的原则,即保证 样本结构 与 总体结构 一 致性。 (2)为了保证每个个体等可能入样,所有层应 采用同一 抽样比 等可能抽样。
(3)在每层抽样时,应采用 简单随机抽样或系统抽样的 方法进行抽样。

2.分层抽样的适用条件
分层抽样尽量利用事先所掌握的各种信息,并充 分考虑保持 样本结构 与 总体结构 的一致 性,这对提高样本的代表性非常重要.当总体是 由 差异明显 的几个部分组成时,往往选用分层 抽样的方法.

分层抽样的具体步骤是什么?
步骤1:根据已经掌握的信息,将总体分成互 不相交的层 分层 步骤2:根据总体的个体数N和样本容量n计算抽 样比k= n:N 求比 步骤3:确定每一层应抽取的个体数目,并使每一 层应抽取的个体数目之和为样本容量n 定数 步骤4:按步骤3确定的数目在各层中随机抽取个 体,合在一起得到容量为n样本 抽样

知识点一

分层抽样的概念

例1 某社区有700户家庭,其中高收入家庭225户,中等收入家 庭400户,低收入家庭75户,为了调查社会购买力的某项指标, 要从中抽取一个容量为100户的样本,记作①;某中学高二年级 有12名足球运动员,要从中选出3人调查学习负担情况,记②; 从某厂生产的802辆轿车中抽取8辆测试某项性能,记作③.则完 成上述3项应采用的抽样方法是 ( B )

A.①用简单随机抽样,②用系统抽样,③用分层抽样 B.①用分层抽样,②用简单随机抽样,③用系统抽样 C.①用简单随机抽样,②用分层抽样,③用系统抽样 D.①用分层抽样,②用系统抽样,③用简单随机抽样

知识点二 例2

分层抽样法的应用

某学校有在编人员 160 人,其中行政人员 16

人,教师 112 人,后勤人员 32 人,教育部门为了 了解学校机构的改革意见, 要从中抽取一个容量为 20 的样本,试确定用何种方法抽取,并写出抽样 过程.
分析 样. 总体由差异明显的几部分组成, 故采用分层抽

解 因为本题样本总体分成三类:行政人员、教师、 后勤人员, 符合分层抽样的特点, 故选用分层抽样方 法.

20 1 1 因为 = ,所以从行政人员中抽取 16× =2(人), 160 8 8 1 从教师中抽取 112× = 14(人 ),从后勤人员中抽取 8 1 32× =4(人). 8 因为行政人员和后勤人员较少,可将他们分别按 1~ 16 和 1~32 编号, 然后采用抽签法分别抽取 2 人和 4 人,对教师从 000,001,…,111 编号,然后用随机数 法抽取 14 人. 这样就得到了符合要求的容量为 20 的样本.

知识点三 抽样方法的综合应用 例 3 下列问题中,最适合用简单随机抽样法抽样的 是 ( B ) A.某电影院有 32 排座位,每排有 40 个座位,座位号 是 1~40.有一次报告会坐满了听众,报告会结束以 后为听取意见,要留下 32 名听众进行座谈 B.从 10 台冰箱中抽出 3 台进行质量检查 C. 某企业有 2 000 人. 其中管理人员 20 人, 工人 1 968 人,后勤人员 12 人.为了解企业机构改革意见, 要从中抽取一个容量为 20 的样本 D.某乡农田有山地 8 000 亩,丘陵 12 000 亩,平地 24 000 亩,洼地 4 000 亩,现抽取农田 480 亩估计 全乡农田平均产量

方法 类别

共同 特点

抽样特征

相互联系

适应范围

简单随 机抽样
系统 抽样 抽样过 程中每 个个体 被抽取 的概率 相等

从总体中 逐个不放 回抽取 将总体分成 均衡几部分, 按规则关联 抽取 将总体分 成几层, 按比例分 层抽取 用简单随 机抽样剔 除抽取起 始号码 用简单随 机抽样或 系统抽样 对各层抽 样

总体中 的个体 数较少 总体中 的个体 数较多 总体由 差异明 显的几 部分组 成

分层 抽样

例4:某初级中学有学生270人,其中一年级108人,二、三年级 各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简 单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样 和分层抽样时,将学生按一、二、三年级依次统一编号为1, 2,…,270;使用系统抽样时,将学生统一随机编号1,2,…, 270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270 关于上述样本的下列结论中,正确的是 ( ) A.②、③都不能为系统抽样 B.②、④都不能为分层抽样 C.①、④都可能为系统抽样 D.①、③都可能为分层抽样

D

随堂练习
一、选择题 1.下列各项中属于分层抽样特点的是( B ) A.从总体中逐个抽取 B.将总体分成几层,分层进行抽取 C.将总体分成几部分,按事先确定的规则在各部 分抽取 D.将总体随意分成几部分,然后随机抽取

2.某中学高一年级有 540 人,高二年级有 440 人, 高三年级有 420 人,用分层抽样的方法抽取样本 容量为 70 的样本,则高一、高二、高三三个年级 分别抽取 A.28 人、24 人、18 人 B.25 人、24 人、21 人 C.26 人、24 人、20 人 D.27 人、22 人、21 人 ( )

D

3.某大学数学系共有本科生 5 000 人,其中一、二、 三、 四年级的学生比为 4∶3∶2∶1.要用分层抽样 的方法从所有本科生中抽取一个容量为 200 的样 本,则应抽三年级的学生 A.80 人 B.40 人 C.60 人 (
B

)

D.20 人

4.有 A,B,C 三种零件,分别为 a 个,300 个,b 个.采用分层抽样法抽取一个容量为 45 的样本, A 种零件被抽取 20 个,C 种零件被抽取 10 个,则此 三种零件共有________ 900 个.

5.已知某单位有职工 120 人,男职工有 90 人,现采 用分层抽样 (按男、女分层 )抽取一个样本,若已 知样本中有 27 名男职工,则样本容量为( A.30 C.40 B.36 D.无法确定

B)

三、解答题 6. 某校高一年级 500 名学生中, 血型为 O 型的有 200 人,A 型的有 125 人,B 型的有 125 人,AB 型的 有 50 人.为了研究血型与色弱的关系,要从中抽 取一个容量为 40 的样本,应如何抽样?写出 AB 血型的样本的抽样过程.
解 因为 40÷ 500=2/25, 所以应用分层抽样法抽取血

型为 O 型的 16 人;A 型的 10 人;B 型的 10 人;AB 型的 4 人. AB 型的 4 人可这样抽取: 第一步:将 50 人随机编号,编号为 1,2,…,50;

第二步: 把以上 50 人的编号分别写在一张小纸条上, 揉成小球,制成号签; 第三步: 把得到的号签放入一个不透明的袋子中, 充 分搅匀; 第四步: 从袋子中逐个抽取四个号签, 并记录上面的 编号; 第五步:根据对应得到的编号找出要抽取的 4 人.


相关文章:
2.1.3分层抽样导学案教师版
搜试试 3 帮助 全部 DOC PPT TXT PDF XLS ...2.1.3分层抽样导学案教师版_数学_高中教育_教育...为了了解教 职工对学校在校务公开方面的意见,拟抽取...
2.1.3 分层抽样
搜 试试 7 帮助 全部 DOC PPT TXT PDF XLS 百度文库 教育专区 高中教育 ...2.1.3 分层抽样_数学_高中教育_教育专区。张喜林制 2.1.3 分层抽样 教材...
分层抽样说课稿
分层抽样参赛课件 24页 2下载券 分层抽样课件 14页 1下载券 系统抽样分层抽样...在这节公 开课 (安宁片区公开课) 我从头到尾都用步步递进的问题启发学生的...
2.1.3分层抽样 学案(人教A版必修三)
搜 试试 7 帮助 全部 DOC PPT TXT PDF XLS 百度文库 教育专区 高中教育 ...2.1.3 分层抽样 分层抽样 [提出问题] 某市为调查中小学生的近视情况,在全市...
分层抽样学案(公开课)
搜 试试 7 帮助 全部 DOC PPT TXT PDF XLS 百度文库 教育专区 高中教育 ...分层抽样学案(公开课)2. 1. 3 【明目标、知重点】 1.理解分层抽样的概念....
2.1.2系统抽样 2.1.3分层抽样 教案(人教A版必修3)
2.1.2系统抽样 2.1.3分层抽样 教案(人教A版必修3)_数学_高中教育_教育专区...在兴趣中化解了难点. ●教学建议 本课利用多媒体辅助教学, 在教法上充分体现...
...三同步测试 第二章:2.1.3分层抽样(含答案)
搜试试 3 帮助 全部 DOC PPT TXT PDF XLS 广告 百度文库 教育专区 高中...高中数学人教A版必修三同步测试 第二章:2.1.3分层抽样(含答案)_数学_高中...
高中数学 (2.1.3 分层抽样)教案 新人教A版必修3
高中数学 (2.1.3 分层抽样)教案 新人教A版必修3_数学_高中教育_教育专区。...和系统抽样,本节课我们学习分层抽样. 推进新课 新知探究 提出问题 (1)假设某...
3.示范教案(2.1.3 分层抽样)
3.示范教案(2.1.3 分层抽样)_数学_高中教育_教育专区 暂无评价|0人阅读|0次下载 3.示范教案(2.1.3 分层抽样)_数学_高中教育_教育专区。2.1.3 分层抽样...
系统抽样,分层抽样,公开课
搜 试试 7 帮助 全部 DOC PPT TXT PDF XLS ...系统抽样,分层抽样,公开课_高一数学_数学_高中教育_...人, 其中中,青,老年职工的比例为 5∶ 32。 ...
更多相关标签: