当前位置:首页 >> 机械/仪表 >>

水下无人机概述


机器人学及前沿专题 2014-12-15

水下无人机概述
【摘要】 本文就水下无人机(又称水下机器人)的起源、研究现状、关键问题以及未来发展 做了较为详细的概述,针对水下无人机的不同分类和应用分析了其关键技术和不同的应用场 景,提出了未来技术发展的趋势。 【关键字】水下无人机,机器人,ROV,AUV Abstract: This article o

verview the different categories and applications for underwater drones (also known as underwater vehicles, UV) about its origin, research works, key issues, and the future development. The key technologies and different application scenarios of UV are analyzed, and the future trend of technological development is also proposed. Keywords: underwater drones, Robot, ROV, AUV

1 背景及起源
江、河、湖、海的水底世界自古令人神往,同探索太空一样,对水底未知世界的探索一刻 也没有停歇,可以说,人类对海洋的了解比对太空的了解还少: 12000 年前,沉没于大西 洋底的亚特兰蒂斯大陆是什么样子?维京海盗在地中海底的宝藏能找到么?有没有大西洋人?北 海海底的泰坦尼克还在不在?海里有多少种鱼?到底有没有河伯、龙王? ……所有这些都不断 激励着人们去探索和求证。 俗话说,眼见为实,但人在水下最多潜到 10 米左右,不带氧气一般坚持 2、3 分钟,世界 纪录也才不过是 15 分 58 秒,无器具潜水最深的世界纪录是澳大利亚人 Herbert Nitsch 创造的 214 米,这已经是人类的极限了。 因此,为了在时间和空间上拓展人类在水下的能力,需要借助护甲(如潜水衣、潜艇), 和替身(无人深潜器、水下无人机),而守护流动的国土,水下资源的勘探,水下生态的研 究,都离不开对应的手段和工具,这是国家战略的需要,也是国家科技水平的体现,毫无疑 问,在海洋开发和末来战争中,水下无人机起着举足轻重的作用。

2 当前研究现状
水下无人机是一种可在水下移动、具有视觉和感知系统、通过遥控或自主操作方式、使用 机械手或其他工具代替或辅助人去完成水下作业任务的装置。在上世纪 70 年代,水下无人机得 到了很大发展,开发出了一批能工作在各种不同深度、进行多种作业的机器人,可用于石油开采、 海底矿藏调查、救捞作业、管道敷设和检查、电缆敷设和检查、海上养殖及江河水库的大坝检 查等领域。
1 / 10

机器人学及前沿专题 2014-12-15

2.1 水下无人机分类
水下无人机 UUV,Unmanned Underwater Vehicle 可分为三大类:一类是有缆水下无人机,习 惯称拖曳式水下无人机(Towing Underwater Vehicle,简称 TUV),一类是遥控潜器(Remote Operated Vehicle, 简称 ROV); 另一类是无缆水下无人机 , 习惯称为自治式水下潜器 (Autonomous Underwater Vehicle, 简称 AUV) 。从第一代上世纪 60 年代的有人深潜器开始,迄今已经过了 ROV(70 年代)、AUV(80 年代)和混合类型的第四代(Hybrid Vehicles)的演进[1]。

2.2 研究现状
目前国内的哈尔滨工程大学研制的 AUV,上海交大的 ROV,中船重工 715 所的 TUV 以及 中科院沈阳自动化所的 ROV 和 AUV 等是我国有代表性的研究成果。在国际上,美国伍兹霍尔 海洋研究所,MIT 水下无人机研究所,美国海军研究生院智能水下运载器研究中心,葡萄牙波 尔图大学,东京大学水下无人机应用实验室,英国海事技术中心等是长期进行水下无人机研制 的主体力量。 在学术界,水下无人机的文章比较集中的期刊包括:《 Ocean Engineering 》、《 Marine Technology Society Journal》、《IEEE Journal of Oceanic Engineering》、《Sea Technology 》, 预计 2015 推出的《Marine and Underwater Science and Technology》(MUST),是 AUVAC 主席 Dick Blidberg 教授准备推出的一本国际期刊, 相信将会为业界提供又一高等次的合作和交流平 台。

2.3 代表性成果
自沈阳自化所于 97 年蒋新松院士领导下开发出“海人一号”水下无人机 ROV 以来,后续 又在 863 等重大项目资助下开发了 1000 米深的“探索者”以及在封锡盛院士领导下,与俄罗斯 合作研发的 CR 系列,可达 6000 米。在 2011 年又开始进行“潜龙 1 号” AUV 的研制并成 功。此外,哈尔滨工程大学研制的具有自主识别和测绘功能的“智水-3 号”也是我国 AUV 的 典型代表。

a. 探索者

b.CR091

2 / 10

机器人学及前沿专题 2014-12-15

c. 潜龙一号

d.智水-3 号 图 1. 国内的水下无人机

美国 MIT Odyssey 的系列 ROV 是世界顶尖海洋打捞公司奥德赛海洋勘探公司(Odyssey Marine Exploration)的顶尖产品,在生产中发挥了巨大价值。2007 年 5 月 18 日宣布,该公司 在大西洋海底一艘 366 年前的沉船上打捞出重达 17 吨的殖民时期钱币,包括约 50 万枚银币和 数百枚金币,价值高达 5 亿美元[2],这是有史以来人类"出水"的最大一笔海底沉船财富。国际 上典型第四代的水下无人机是可深潜 11000 米的美国海神号(Nereus),此外日本下潜 4000 米 的“R2D4”,下潜可达 6000 米、模块化构成的美国 REMUS 系列等 AUV 也是代表性的成果。

a. MIT Odyssey

b. Nereus

c. R2D4

d.REMUS 图 2. 国外的典型产品

3 关键问题及挑战
正如所有的科学探索一样,有成功也有失败,就像上节提到的“海神号”,在 2014 年 5 月 10 日探索新西兰克马德克海沟时在水下 9990 米处失踪,根据后来海面上漂浮的潜水器的碎片分
3 / 10

机器人学及前沿专题 2014-12-15

析,可能的情况是,潜水器的陶瓷层在数千米深的海中崩溃 [3]。因此,水下无人机本体所需的 各种材料及技术仍需要继续提升。除上述共性问题外,还有几个特殊问题[4]。

3.1 水下无人机控制问题
水下无人机是在水中运动的具有六个自由度的刚体,它本身就是一个强耦合的非线性系统;由 于在水中运动,水动力(阻力)系数和运动速度的平方成比例;采用螺旋桨推进,推力和螺旋浆转速平 方成正比。这一切使得控制问题变得很困难,特别是要求在定点进行作业时,上述原因造成在零速 时的“零增益、零阻尼”现象,使得动力定位控制系统的刚度很难满足定点作业的要求。这是一个 有待研究的问题。 图 3 是两种水下无人机的控制原理。

图 3. ROV 和 AUV 的控制原理

3.1.1 TUV 和 ROV 控制系统及结构发展
TUV 和 ROV 水下无人机的控制技术既有相同之处,也有不同之处,但两者的控制机理是 相同的。从控制系统结构的角度来看,它们的底层控制相同,只是高层控制有所不同,有缆水 下无人机 (ROV)控制系统的设备总体上可以分为三部分: ? 水上控制设备:水上控制设备的功能是监视和操作水下载体,并向水下载体提供所需的 动力 ? 水下控制设备:水下控制设备的功能则是执行水面的命令,产生需要的运动以完成给定 的作业使命 ? 脐带电缆 :脐带电缆用来传递信息和输送动力
4 / 10

机器人学及前沿专题 2014-12-15

具体来说,ROV 控制系统由航行控制系统、导航定位系统、信息采集系统、观察系统、作 业设备控制系统、水面支持设备控制系统、电缆等构成[5]。目前,随着计算机技术在 ROV 中的 广泛应用,人们将采用更新型技术,如多媒体技术、临场感技术以及虚拟现实技术,更形象化 地实现对 ROV 的控制。 任何事物总是一分为二的, ROV 的脐带电缆是一个不利因素,它约束了 ROV 的活动范 围,增加了水面设备的成本,在复杂环境中尤其迸入复杂结构内部将危害着 ROV 的安全,因 而解脱这种束缚是各国水下无人机专家追求的目标,这就是自治水下无人机 AUV 技术得以发 展的理由。

3.1.2 AUV 的控制问题
AUV 的控制涉及如机器视觉、环境建模、决策规划、回避障碍、路径规划、故障诊断、坐 标变换、动力学计算、多变量控制、导航、通讯、多传感器信息融合以及包容上述内容的计算 机体系结构等多方面内容。AUV 控制类型划分如下: ? 预编程型:指 AUV 在完成使命的过程中完全执行预定的程序,在机器人下水前,操作 人员根据使命需求,采用专门的语言编制使命程序,并将使命程序下装到机器人上的 控制计算机中 ? 智能型:通过路径规划,根据实际作业环境的反馈信息,利用神经网络、模糊控制等人 工智能方法动态自主调整机器人的各种状态,做到水下无人机的自适应和自主控制。

3.2 无人机回收问题
目前,除较为平静的内河和湖泊外,深水 AUV 水面回收是不现实的,这是因为深海区浪涌 很大。海试经验表明,在 4000 米水深的洋面,风平浪静时浪涌也在 3 米以上,这则很难保证回收时, 机器人本体和回收装置在同一水平的波面上,这将带来极大的危险,因此还是一个至今还没有完 全解决的问题。50~100 米回收是唯一可行的方案,从使用角度来看,这是十分重要,它的解 决,将大大减少回收时人身及设备的危险。

3.2.1 水下无人机的本体
? 潜水器:潜水器是携带观察和作业工具设备的运动载体。在开式框架结构件上方的浮力 块,保证潜水器全负荷时水中浮力基本为零;在水平、侧向和垂直方向都装有推进 器,从而可实现三维空间的运动。框架前部或必要的地方安置云台,在其上装有电视 摄像机和照明灯。常规的传感器包括:成像声纳、罗盘、深度压力传感器、高度计 等。水下电子单元包括:水下计算机、驱动器、控制模块,安装在常压的密封仓内。 系统监视所需要的传感元件包括: 动力、压力、温度、漏水等。 ? 中继器:为了能迅速、准确地将潜水器送到预定工作水深和较快地收回到水面,同时为 了减弱母船摇摆及脐缆所受海流阻力给潜水器运动和作业带来的附加阻力、干扰和影
5 / 10

机器人学及前沿专题 2014-12-15

响,一般有缆遥控水下无人机配置中继器。中继器内储存系缆,并装有系缆驱动收放 机构,潜水器非工作状态时将与中继器联锁在一起。 ? 吊放系统:用以投放、回收中继器和潜水器。吊放系统通常采用门形结构、液压驱动, 并设有消摆机构和脐带电缆的储存。 ? 系缆:用于潜水器和中继器之间机械软连接及能源馈送和信息传输。系缆套穿浮力材料 以使其在水中为零浮力,从而减小水流阻力对本体的干扰。 ? 皑装主缆:在吊放架与中继器之间完成机械软连接、能源输送、信息传输的作用。它是 钢丝皑装结构,以便同时起到吊放钢缆的作用, ? 观察作业设备:在运动载体上安装摄像机、成像声纳,构成载体的基本系统。在需要作 业时,可再加装 1—2 水下机械手和多种水下作业工具。

3.2.2 吊放及绞车系统
吊放系统是将中继器与水下无人机本体安全、迅速地施放和回收的必配设备,同时承受连 接母船控制台与机器人本体之间的电力控制和数据信息的传输。 ? 吊放系统组成:由底架、U 形门架 (悬臂吊架)、滑轮、锁栓机构、皑缆绞车、导电滑环 以及液压动力系统组成 ? 对吊放系统的要求:具有良好的工作可靠性;足够的结构强度;收放时皑装主缆锁紧的 可靠性,施放过程中的制动能力和缓冲能力。

图 4. 收放装置示意图

3.3 水下无人机的通信问题
和通信直接相关的有两个系统:监视系统和监控系统。前者主要指用于水下无人机水下搜 索和水下观察的设备,一般包括有水下摄像机、云台及照明、成像声纳、声学和磁学定位系统 等。后者主要指介入水下无人机运动控制和保障系统正常运行所需要的传感设备,一般包括有 深度计、高度计、方向罗盘、温度、压力、电压电流等,这些可以通过传感器采集,并通过有
6 / 10

机器人学及前沿专题 2014-12-15

线或无线方式进行信息传输。然而目前水下通信的仅有手段是水声和光纤。目前从国内外的情 况来看,水声的可靠通信速率为 1200 波特率。通信时延取决于水声在水中来回一次所耗费的时 间,水深为 6000 米时,传输时间就是 8 秒。传输的距离取决于使用的载波频率及发射的功率,对水 下无人机来说,这两者都受到了很大的限制。通信时延是一个本质上不能克服的问题,因此如何在 功率限制的情况下,提高通信的距离将是一个主要问题,目前通信距离仅十公里。随着通信距离的 增大,AUV 的作业范围也可随之增大。利用水声信息实现监控,必须克服传输时延所带来的困 难。右图为一个水听器实例子。 水听器系统水听器系统是一种被动声学系统,使用四个 RESON TC4013 模块和一个 ADI 公司 SHARC-21369 用来确定相对方向的水下声波发射器。 它具有在 20-35 之间 kHz 范围内的多个水下声波发射器鉴别 能力,但只能倾听和跟踪一个选择的频率。水听器为计算机 和海拔信息提供精确度± 1 的信息,这个信息在导航到声波发 射器的任务中用到。 光纤一般用于带缆的水下无人机 TUV、ROV,由光端机 (水面)﹑水下光端机﹑光缆 组成。其优点是数据率高(100Mbit/s), 很好的抗干扰能力。缺点,限制了水下无人机的工作距离和 可操纵性。 水下激光通讯使用海水介质吸收率最小的蓝绿激光,已 达 100 米深的海空通讯距离,但尚处于试验阶段,功耗和体 积较大,效率低,实用性有待提高。
图 5. 水声器(Cornell 大学)

3.4 水下无人机的能源问题
能源问题一直是限制 AUV 作业范围的主要因素,研究开发比能率高的能源是一个长期努 力的方向。在可以预见的将来,然料电池是一种可供选择的方案。未来可能用可变半衰期的核 燃料的电池。在这些问题解决之前,可以利用前述回收装置作为中继站,进行水下充电,这样就可 以利用两台 AUV 交替充电,实现水下无限期的作业。当然这样并不能解决 AUV 的大范围工作 问题。以下是 ROV 和 AUV 对能源的不同要求 ? ROV 水下无人机供电电压通常与水下无人机的功率和工作深度有关。随着深度的增加, 高电压的动力输送和动力设备是必须具备的。为了减少脐带电缆的尺寸和重量,将来 ROV 会采用更高的电压等级。这些都将由水面提供交流电动力,一般中小型水下无人机 采用 220V,50~60Hz 单相交流电供电,大型水下无人机多用 3000v 以上的三相交流电 向水下载体供电。 ? AUV 自身携带电池,早期多采用密封的铅酸电池,现在多采用高比能的银锌电池等。
7 / 10

机器人学及前沿专题 2014-12-15

4 最新应用与进展
水下无人机的应用自诞生以来就主要服务于民用和军用两个方面:海洋资源的研究和开 发,海洋环境监测、海洋资源勘察、海洋科学研究等属于传统民用领域,结合最新移动互联网 的发展,又有了很多新的形态。

a.具有触觉系统的水下无人机

b. 使用脚蹼游动水下无人机

c. 基于手机控制的水下直升机

图 6. 几种新型民用水下无人机 图 6.a 是德国弗劳恩霍夫制造技术和应用材料研究院开发的带有应变仪的具有具有触觉系 统的水下无人机[6]。具有触觉感知能力的应变仪实际上是一种打印条码,仅有几十微米宽,是 人体头发直径的一半,因此这种应变仪可以彼此近距离排列,水下无人机能够精确地感知到障 碍物的状况。 b. 是加拿大科学家开发出使用脚蹼游动水下无人机[7],这款机器人名为 AQUA,小巧灵活,使用脚蹼而非推进器游动,设计用于从沉船地和暗礁处搜集准确数据。c. 是浙江大学在今年 OI 中国水下无人机大赛获得一等奖的 “基于手机控制的水下直升机”[8]。它 利用手机应用软件和蓝牙功能操控水下无人机,实现机器人的自主垂直升降,创新性很强。 另一方面,水下无人机军用目的研究日益增多,这也揭示了在新形势下各国对自身海洋权 益的重视,零伤亡是未来战争中的选择,因而使得无人武器系统在未来战争中的地位倍受重 视,其潜在的作战效能越来越明显。作为无人武器系统重要组成部分的水下无人机能够以水面
8 / 10

机器人学及前沿专题 2014-12-15

舰船或潜艇为基地,在数十或数百里的水下空间完成环境探测、目标识别、情报收集和数据通 讯,将大大地扩展了水面舰船或潜艇的作战空间。尤其是自主航行的水下无人机,它们能够更 安全地进入敌方控制的危险区域, 能够以自主方式在战区停留较长的时间,是一种效果明显的 兵力倍增器。更重要的是,在未来的战争中, “以网络为中心”的作战思想将代替 “以平台为中 心”的作战思想,水下无人机将成为网络中心站的重要节点,在战争中发挥越来越重要的作用。 目前各国重点研究的应用包括:水雷对抗、反潜战、情报收集、监视与侦察、目标探测和环境 数据收集等。也越来越提高到战略的层次,这将会带给水下无人机快速发展带来契机。

5 未来方向和问题分析
新一代水下无人机的发展日趋混合化,结合 ROV 和 AUV 的优点,如 ROV 要求一是水深 普遍在 6000 米;二是操纵控制系统多采用大容量计算机,实施处理资料和进行数字控制;三是 潜水器上的机械手采用多功能,力反馈监控系统:四是增加推进器的数量与功率,以提高其顶 流作业的能力和操纵性能。此外,还特别注意潜水器的小型化和提高其观察能力,而 AUV 除 以上共性特点还要不断提高其自治能力和生存能力,避免丢失这一无缆深潜器所面临的最大问 题。从关键技术的发展上我们可以分述如下: ①能源技术质子交换膜燃料电池具有水下无人机的动力装置所需的性能。该电池的特点是 能量密度大、高效产生电能,工作时热量少,能快速启动和关闭[9]。该电池技术难点是合适的 安静泵、气体管路布置、散热、固态电解液以及燃料和氧化剂的有效存储。 ②精确定位技术 目前水下无人机在水上采用 GPS ,水下定位采用声学定位设备。水下 混水作业一直是水下无人机应用的最大障碍,利用声学、激光技术 GPS 技术目前正在迅速地发展,自治导航的精度预计将在 5 年内提高 10 倍。 ③零可见度导航技术 以及计算机图形增强技术,将使这个难题得到解决。 ④ 材料技术 在水中每增加 10m 的水深,外界压力将增加 1 个大气压 (0.1MPa)。高强度、 轻质、耐腐蚀的结构材料和浮力材料是水下无人机重点发展的技术问题。 ⑤ 作业技术 水下无人机的发展目标是代替人完成各种水下作业。柔性水下机械手、专用 水下作业工具以及临场感、虚拟现实技术的发展,将便水下无人机在海洋开发中发挥更大的作 用。 ⑥ 声学技术 被称为声学技术革命的最新的 "矢量换能技术",可使自主水下无人机的跟踪 距离达到 100km 以上。低频水声通讯技术可使在水下的通讯距离达到 1000km 以上,图像的水 下传输距离可达 20km 以上。水声技术的发展将使水下无人机真正具有"千里耳"。 ⑦ 智能技术 机器具有与人相同的智能或超过人的智能是科幻电影的事情,从目前机器智 能的发展程度看还需有较长的路要走。由人参与或半自主的水下无人机是解决目前复杂的水下 作业的现实办法。 ⑧ 回收技术 水下无人机的吊放回收作业一般是在海面附近进行,所以常受海况条件的限 制而成为影响水下无人机水下作业的主要因素。
9 / 10

机器人学及前沿专题 2014-12-15

综上所述,21 世纪是开发海洋的世纪,随着开发海洋的需要及技术的进步 ,适应各种需要的 水下无人机将会得到更大的发展。

参考文献
[1] 封锡盛,自主海洋机器人发展中瓶颈问题和关键技术[R],2014.11.15 [2] http://discover.163.com/07/0521/08/3F0MFRRL000125LI.html [3] http://scitech.people.com.cn/n/2014/0514/c1007-25015259.html [4] 蒋新松,来机器人技术的发展方向 [N],计算机世界报 1996 年第 27 期 [5] 无人有缆遥控水下无人机 ROV( Remote Operated Vehicles)研究综述[EB/OL] [6] http://tech.qq.com/a/20090507/000082.htm [7] http://www.cnbeta.com/articles/123485.htm [8] http://www.oceanol.com/keji/xjs/2014-09-16/36717.html [9] 周凯,易杏甫,水下无人机概述和发展应用前景[J],科技向导,2010 年第 24 期:283-284.

10 / 10


相关文章:
应急无人机航摄系统的组成与应用
应急无人机航摄系统的组成与应用_法律资料_人文社科_专业资料。应急无人机航摄...能实现全天候、全天 时观测,在洪水、内涝淹没区域水下地形探测中具有明显优势。...
无人机的故障检测和维护 (1)
执行机构故障检测,无人 水下航行用都可卡尔曼滤波器估计。 然而, 很少有可以找到的文献结果在故障检测自主无人 直升机方面。 Drozeskiet 等人提出一个投资神经网...
对无人机互操作性标准的一些探讨
STANAG 系列标准是国际上成功的互操作性标准,由美国国防部长 办公室 AT&T、陆军、 海军等多部门经费支持,适用于无人机、无人水下航行 器、无人海面艇等无人系统...
互联网+自主水下航行器(AUV)行业研究报告_图文
“互联网+”的相关概述 一、 “互联网+”的提出 二、 “互联网+”的内涵 ...《2016-2021 年全球及中国无人机市场深度调查及投资前景研究报告》 《2016-2021...
2016届浙江省瑞安市八校高三上学期期中联考物理试题 wo...
无人机坠落地面时的速度 v; (3)在无人机坠落过程中,在遥控设备的干预下,...(16 分)如图所示为水上滑梯的简化模型,倾角θ =37°斜滑道 AB 和水平滑 道...
最新前沿科技——瑞士NEO S无人直升机
最新前沿科技——瑞士NEO S无人直升机_机械/仪表_工程科技_专业资料。无人直升...一个超声波水下电话 一个甚高频(VHF)广播(为水面上准备) 周视声纳 罗经 ...
无人机自动驾驶仪_图文
无人机自动驾驶仪 1.自动驾驶仪 自动驾驶仪(autopilot): 自动驾驶仪 : 按...适用于各种固定翼、直升机、特种飞行器、陆地、水面和水下机器人控制,以及载体...
机电系统智能控制
此外, 水下自主运载 器、水下无人机车、无人自主驾驶机动车在未知或复 杂危险环境下完成探索、通信、合作等功能也需要智 能控制的协助实现。 3.2 模糊控制在...
民用无人机如何飞?现有空管系统难管”黑飞“
悬崖、峡谷、水下??无人机将代替人们的脚步, 驶入这些空间,并通过虚拟现实设备让足不出户的旅行者感知真实景象。 “我们不妨想得 更大胆, 如果智能手机的所有...
监管无人机的必要性和可行性
监管无人机的必要性和可行性_兵器/核科学_工程科技_专业资料。本文阐述无人机...当前无论地面机器人、空中机器人、 水下机器人、太空机器人,正在蓬勃发展,已...
更多相关标签:
水下无人机 | 大疆水下无人机 | biki水下无人机 | 警用 水下无人机 | gladius水下无人机 | 2017大疆水下无人机 | 美国水下无人机 | 水下仿生无人机biki |