当前位置:首页 >> 能源/化工 >>

生物质转化为清洁能源(中英文)


热解系统 申请人 发明者 应用编号: 归档时间 弗兰克?帕索罗布尔斯,CA(美国) 弗兰克?帕索罗布尔斯,CA(美国) 14/105,832 2013 年 12 月 13 日

餐厨垃圾高效裂解生产清洁燃气技术
本发明公开了用于垃圾热解的系统和方法,系统包括一个主要反应和次要反应。合成气的主 要干馏热解产生,然后混合随着助燃空气并点燃,在反应下,产生

能量。碳进入二次反应并 通过一个气闸舱从系统排出。

热解系统 工作原理
[001]本发明涉及一种用于热解废物的热解过程中回收热量的系统和方法。

发明背景
[002]废材料,目前不断增加的处理问题。 [003]在过去,垃圾和有毒废物往往被烧毁。然而,由于政府和监管标准的提高,致癌的空 气排放潜在着对公众健康的影响, 如电池和燃烧传播有毒物质的风险, 垃圾焚烧已普遍被抛 弃。 [004]在我们的努力下,以热解过程,将提供低排放的燃烧安全和允许从燃烧热取代焚烧垃 圾的回收率。 [005]发明参考,描述了一个系统的废物热解。该系统包括一个热氧化裂解装置,联合一个 堆栈单元。热解装置包括第一罐布置在燃烧室和设置燃烧室外面二反应。燃烧室供给热量, 该粉体的废物是通过第一罐输送。 热氧化剂氧化热解气体从第一罐和堆栈单元提供一个方法 将热解分析气体通过热氧化。从燃烧室的烟气排放到大气中。

总结
[006]本发明的特征用于裂解系统,包括裂解装置裂解单元的改进,热氧化装置,和一个堆 栈单元,例如,在美国专利中所描述的类型为 6758150 号。如上所述,在热解系统的发明, 为防止合成气在排气管中形成堵塞热解装置和烟气排出, 气体从热解装置中排出, 以恢复它 们的热量,并消除烟气对环境的排放。热解装置的这些和其他功能的增强,在商业过程中使 用的红外活性,可能会增加热解系统,包括热解装置的能量产率。 [007]一方面,本发明的特征包括热解装置(一)燃烧室包含一个或多个燃烧器的配置产生 热烟气; (b)主要的反应,设置在燃烧室,配置为至少部分地裂解原料送到反应,从而产生 合成气;和(c)混合室,使合成气和烟气流动。 [008]一些实现可能包括以下几个功能。 [009]该装置可进一步包括(一)烟道气卸管,其具有与燃烧室连通的密封流体连通的第一 端,以及与该混合室流体连通的第二端;和(e)设置烟气溢流管内,合成气溢流管具有第 一端流体连通的主要反应和流体连通的第二端与混合室。 在一些实施方案中, 在使用过程中, 烟气的救济管道内气体的温度和合成气溢流管在+ / -25 华氏度, 对烟道气和合成气的温度分 别在燃烧室与主罐,合成气卸管外壁和烟道气卸管内壁之间的间隙可以选择这样的流动性, 在使用过程中的气体流速约 30 至 60 英尺/秒。 [010]某些情况下,长轴的合成气补救设置管道通常垂直于水平面通过一长轴主要反应。烟 道气卸管长轴最好也设置一般垂直于水平面,在这种情况下,两管长轴一般可共线, [011]该装置还可包括在混合室中的混合隔板和分配锥,其配置为在混合室中的直接气体。 该装置还可包括燃烧作为入口和加力元定位锥下游分布。 [012]该装置还可以包括热氧化室流体连通的混合室和加力系统设置在热氧化室。在某些情 况下,一个前与热氧化室流体连通的膨胀室。多个混合隔板可以设置在膨胀室中。风机可设 置扩展下游在室内,风机被配置在膨胀室抽真空,热氧化室,混合室。 [013]该装置还可以包括一次反应流体连通的反应和配置从主反应中接收固体残留物。二次 反应最好安装在膨胀锡安辊使主要反应和次要反应相对运动。 这种安装技术允许二次反应和 主要反应是由刚性管道连接。 [014]在另一方面,本发明提供了利用本发明的设备的方法。例如,本发明方法包括(a)提 供原料的一个主要的反应,设置在燃烧室中包含一个或多个燃烧器; (b)利用燃烧器产生的 热烟气,从而至少部分裂解原料,生成合成气;和(C)绘制的烟道气和合成气进入混合室 采用负压的主要反应和燃烧室。 [015]该方法的一些实现可能包括以下几个功能的一个或多个。 [016]该方法可进一步包括通过烟道气卸管排出燃烧室中的烟道气体,该烟道气卸管具有与 燃烧室连通的密封流体连通的第一端部 D 流体连通的第二端与混合室;和(e)排气从合成

气主要通过合成气溢流管反应处理线气体减压管内的气, 可靠在与主要的反应和流体连通的 第二端与混合室的液体具有第一端 EF 管。

图纸描述
[017]图 1 是根据本发明的一个实施的热解装置的示意图。 [018]图 2 是一个与热解装置在流体连通性的扩张腔的示意图,如图 1 所示。 详细描述 热解装置 10 在图 1 中显示。 裂解装置 10 可用于执行初始裂解步骤中裂解系统, 包括热氧化 装置和堆栈单元 N 把以上,裂解单元线路的方式,减少了机组检修气排放烟气,路线以恢 复他们的热消除了烟气排放环境,包括其他功能,提高了商业可行性的热解系统。 热解装置 10 包括一个燃烧室 12,它是由能够承受的温度 1200-2600°F.燃烧器 14 材料设置 在燃烧室。帖前燃烧器可以是天然气或丙烷,并适于产生和供应热燃烧气体进入燃烧室。虽 然两只燃烧器的说明,可以提供更多或更少死亡; 一个主要的反应 16 设置在燃烧室 12。 原料的裂解发生在这个主要的反应, 产生的热解气体, 称为合成气。 主要的反应 16 包括在其上表面上的槽或其它开口, 其与合成气管道 17 流体连 通。 主要的反应有圆柱形的截面和包含输送元件被配置为将原料经过蒸煮, 如图 1 所示为螺 钉 18。 主要的反应 16 的进料端和出料端 22 20。 进料端和排出端反应延伸通过近端和远端, 分别,在燃烧室 12。螺杆 18 适于从进料端移动物料从进料端到端部的轴向旋转运动 F 的反 应。 原料输送到主反应罐的进料端 20。如果原料是例如固体材料,如,对废轮胎橡胶件,原料 送入固体入口 24,保留原料和直接到气闸舱 26。漏斗可以包括液位传感器调节输送原料来 增强程序的主要反应悬浮控制。热解装置还可以包括一个液体进料。气闸舱 26 对原料输送 到主要的反应和用于防止或减少牛的入场氧为主要的反应。 一个合适的密封舱结构的详细描 述在美国专利:6758150 号。 由于旋转螺钉 18 将沿主反应 16 在图 1 中的箭头方向上的长度的原料, 原料经过热从燃烧器 14、电热梳烙气体漩涡的主要反应,热解物质产生合成气。 这种合成气是用尽(垂直箭头,图 1)通过一个合成气管道 28 在密封流体与合成气管道的 出口 17。合成气溢流管保持在负性压力从主反应画合成气。合成气减压管 28 从主要反应垂 直延伸,最好是处置一般垂直(±10 度的垂直于肢)在水平面内通过主要反应的长轴,如 下所示。 虽然它是优选的合成气的救济管道一般垂直于轴线, 在某些实现我不能在±45 度, 例如,在+ / - 20 度的垂直。合成气卸管 28 设置在烟道气卸管中,30 是在密封流体连通的燃 烧 12 室。燃烧室中的热烟气,由燃烧器 14 产生,通过烟道气卸管 30 排出燃烧室,使合成 气的温暖,因为它的旅行通过合成气卸管 28,其各自的腔室中的烟气和合成气的温度是比 较接近这些气体在燃烧室中,例如,在燃烧室中的温度薄+ 1-25°F,这可以减少或消除固体 残留物的形成( “熟料” )在合成气救济管道,减少维护。合成气管道的一般垂直位置也 LPS 引起的任何罚款回到主要的反应而不是被困在管保持风道清。 两者之间的壁的间隙,和管道的体积,被选择以保持从约 30 至 60 英尺/秒的气体流量的两 种气体。 烟道气然后流入一个混合室 32,它与合成气混合,而不是被耗尽到大气中。其结果是从烟 道气中的热能回收,提高了电子该系统的能源产量。此外,排放的热气体,和潜在的颗粒, 从热解装置的环境被淘汰,提高环境的遵守制度。

混合的气体和烟道气的混合挡板 34,后的气体混合物是由一个分布锥分布的 36 个。分布锥 36 力的混合物向外在混合室中,由于混合气流经燃烧空气入口 38。当它通过燃烧的空气入 口,合成气/烟道气混合物与燃烧空气混合。的混合物三气体进入热氧化室 42 通过加力燃烧 器 40,该路由的混合气使混合物通过加力燃烧器,点火气体的。燃烧空气入口 38 最好的加 力燃烧器 40,上游如图所示,而不是进一步上行,防止气体点火。在一些电磁,燃烧空气 入口是一个环形室 42 的形式。 参考图 2,通过加力燃烧器 40 后,混合气进入燃烧室膨胀室 42 包括多个混合挡板 43,翻滚 和混合气,使气的时间是完全或基本完全燃烧,从而减少从系统中排放。的气体混合物,然 后通过鼓风机 45,其中规定了一个氮负压力热氧化剂室和燃烧空气入口,可以排出一堆。 在某些实施中,热解系统可以包括回收能量的装置从合成气和烟道气。例如,从热氧化装置 放电可提供给锅炉水加热产生的蒸汽。这和其他热回收方法米热解是众所周知的,并讨论, 例如,在美国的专利 6758150 号。 在主要干馏热解的原料后剩下的固体物质(碳)瀑布虽然导管 44 在主炉出料端为一次进料 端 46 反应 48, 其设置在燃烧室 12 和外下方的主要反应。 经过 48 次蒸馏, 用螺钉 50 传达, 固体物质冷却,所有无危险的点火,使其安全。一些热解也可能发生在二反应,由于固体物 料余热。 为 44 的管道热膨胀,以及主要的反应 16 次蒸煮 48 由于热膨胀差之间的相对运动,热膨胀 辊 52 是最后提供热膨胀辊 52 可提供最后的主要反应罐相邻过渡到下面的二次反应罐和和支 持二级反应罐,如所示。这些热膨胀辊在主要和次要反应罐部分之间提供一定程度的纵向和 横向运动。热膨胀辊支承在一个框架(图中未显示)

【0031】靠近出料端二次反应罐的是排放 54 包括排放气闸 26.材料由螺钉 50 给排放 54 排 放通过气闸舱 26 从裂解单元 10 到一个合适的容器。 第二反应罐的长度是由时间的固体物料 的热解固体材料是充分完整.材料变冷.最好温度小于 220℉。 【0032】可以提供各种传感器来控制热解系统的操作,因为这是众所周知的。 【0033】该系统和方法适于液体废物废物,危险废物,工业废物,以及所有形式的挥发性有 机化合物(VOCs) 。该系统和方法可用于烃类,PCB`s,橡胶,氯化物,除草剂,杀虫剂,塑 料,塑料,木材和纸。热解过程分解的垃圾材料成为气体和碳。碳可用于任何利用碳回收应 用中,例如在油墨或涂料,在轮胎中,活性炭,和许多其他产品。 其他具体表征 【0034】一些实施例已被描述。然而,钛将是了解各种可进行修改,没有从信息披露的范围 和精神。因此,其在其它实施例的范围内。

1、热解装置组成: 一个燃烧室,其中包含一个或多个燃烧器,以产生热烟气; 一个主要的反应罐,布置在燃烧室内。 配置为至少部分地裂解原料; 交付的反应罐,从而产生合成气;

合成气和烟道气在混合室内流动; 在密封流体连通的燃烧室流体连通的第二端与混合室具有第一端烟气溢流管; 设置在烟道气卸管内,一个合成气管道在流体联通中具有第一端混合室。 2.(取消) 3.设备要求 1 其中长轴的气卸管一般垂直于水平平面通过一长轴主要反应罐。 4.设备要求 3,烟气的长轴减轻管道也处理一般垂直于水平面 5.设备要求 1 还包括一个混合挡板和在混合室中的锥形分布,配置在混合室中直 接向外的气体。 6.设备要求 5 进一步包括一个燃烧进气口和一个加力燃烧室元素定位下游的锥形 分布。 7.设备要求 1 中进一步包括一个次要的流体连通的反应罐和配置从主要的反应罐 得到的固体残留物。 8.设备要求 7 中二级反应罐安装在扩张辊允许的相对运动主要的反应罐和次要的 反应罐。 9.设备要求 8 在二级反应罐主要的反应罐是由刚性管道连接。 10.设备要求 1 的设备进一步包括一个与热氧化剂流体联通的混合热室,和一个加 力燃烧室系统氧化剂室。 11.设备要求 1 中,在使用过程中,烟道内气体泄压管内气体的温度合成气管道 是在+ / - 25 摄氏度。燃烧室和主要的反应罐中烟气和合成气的温度。 12.设备要求 10 进一步包括一个流体与热氧化剂室联通的扩张室。 13.设备要求 2 进一步包括一个配置在扩张室的多元化的混合挡板。 14.设备要求 12,进一步包括,下游在膨胀室中,一个鼓风机配置为了在膨胀室 中吸成真空,热氧化室,和混合室。 15.设备要求 1 的设备之间的间隙外墙的合成气减压管的流速是选择在管道内约 30 至 60 英尺/秒这样的速度。 16.方法包括: 提供原料的主要反应罐,设置在燃烧室中含有一个或多个燃烧器;利用燃烧 器产生热烟气,从而至少部分裂解原料,生成合成气;通过应用负压主要反应罐 将烟道气和合成气引入混合室; 在燃烧室和燃烧室之间有一个密封流体连通的第 一末端的烟道气卸管排出燃烧室中的烟道气与混合室流体连通的第二端; 通过安 装在烟道气卸管内的合成气管排出主要反应罐内的合成气; 具有第一端流体连通 的合成气卸管与主要的反应罐和流体的第二端与混合室联通。 17.(取消) 18.在要求 16 的方法中合成气卸管的长轴方向一般垂直于一水平面,通过一长轴 主要反应罐。 19.要求 18 的方法中,在烟道的长轴气体减压管布置也一般垂直于水平面。

(i9) United States (i2) Patent Application Publication (10) Pub. No. : US 2015/0166911 Al
Reed
(43)

Pub. Date:

Jun. 18



2015
(54) (71) (72) (21) (22) PYROLYSIS SYSTEMS Applicant Frank Reed, Paso Robles, CA (US) : Inventor: Frank Reed, Paso Robles, CA (US) Appl. No.: 14/105,832 Filed: Dec. 13,2013

Publication Classification (51) (52) Int. CL

CPC ....................................... C10J3/82 (2013.01)
ABSTRACT

U.S. Cl.

CIOJ M2

(2006.01)

(57)

Systems and methods are disclosed for pyrolysis of waste feed material. Some systems include a main retort and a secondary retort. Syngas is produced by pyrolysis in the main retort, and is then mixed with combustion air and ignited, in some cases to produce energy. Carbon char travels to the secondary retort and is exhausted from the system through an airlock.

Patent Application Publication Jun. 18,2015 Sheet 2 of 2 US 2015/0166911A1

Z Qld

US 2015/0166911 A1
PYROLYSIS SYSTEMS FIELD OF INVENTION [1] The present invention relates to systems and methods for pyrolyzing waste materials and recovering heat from the pyrolysis process. BACKGROUND [2] Waste materials present ever-increasing disposal problems. [3] In the past, refuse and toxic waste were often burned. However, due to increased governmental and regulatory standards, the potential public health impacts of carcinogenic air emissions, such as dioxins and fiirans, and the risks of spreading toxic plumes, the burning of wastes has generally been abandoned. [4] Efforts have been made to replace burning of waste with pyrolysis processes that would provide for safe combustion with minimal emissions and allow recoveiy of heat from combustion. [5] U.S. Pat. No. 6,758,150, the Ml disclosure of which is incorporated herein by reference, describes a system for pyrolysis of waste material. The system includes a pyrolysis unit, a thermal oxidizer unit, and a stack unit. The pyrolysis unit includes a first retort disposed within a combustion chamber and a second retort disposed outside the combustion chamber. The combustion chamber supplies heat, which pyrolyzes the waste material as it is conveyed through the first retort. The themal oxidizer oxidizes pyrolysis gases from the first retort and the stack unit provides a draft to move the pyrolysis gases through the thermal oxidizer. Flue gases from the combustion chamber are vented to atmosphere. SUMMARY [6] The present disclosure features improved pyrolysis units for use in pyrolysis systems that include a pyrolysis unit, a thermal oxidizer unit, and a stack unit, e.g., of the type described in U.S. Pat. No. 6,758,150. As discussed above, in the pyrolysis systems disclosed herein, syngas is exhausted from the pyrolysis unit in a manner that prevents formation of clinkers in the exhaust duct, and flue gases are discharged from the pyrolysis unit in a manner that recovers their heat and eliminates discharge of flue gas to the environment. These and other features of the pyrolysis units enhances their viability for use in commercial processes and may increase energy yield from pyrolysis systems including the pyrolysis units. [7] In one aspect, the invention features a pyrolysis device comprising (a) a combustion chamber containing one or more burners configured to generate hot flue gases; (b) a main retort, disposed within the combustion chamber, configured to at least partially pyrolyze a feedstock delivered to the retort, thereby generating syngas; and (c) a mixing chamber, into which the syngas and flue gases flow. [8] Some implementations may include one or more of the following features. [9] The device may further include (d) a flue gas relief duct having a first end in sealing fluid communication with the combustion chamber and a second end in fluid communication with the mixing chamber; and (e) disposed within the flue gas relief duct, a syngas relief duct having a first end in fluid communication with the main retort and a second end in fluid communication with the mixing chamber. In some implementations, during use, the temperature of the gases within the flue gas relief duct and the syngas relief duct is within +/_25 degrees F, of the temperature of the flue gas and syngas in the combustion chamber and main retort, respectively. The clearance between an outer wall of the syngas relief duct and an inner wall of the flue gas relief duct may be selected such that the

Jun. 18,2015 1
flow rate of the gases during use is about 30 to 60 feet/second. [10] 111 some cases, a long axis of the syngas relief duct is disposed generally perpendicular to a horizontal plane taken through a long axis of the main retort. The long axis of the flue gas relief duct is preferably also disposed generally perpendicular to the horizontal plane, in which case the long axes of the two ducts may be generally colinear, [11] The device may further include a mixing baffle and distribution cone within the mixing chamber, configured to direct gas outwardly within the mixing chamber. The device may also include a combustion gas inlet and an afterburner element positioned downstream of the distribution cone. [12] The device may also include a thermal oxidizer chamber in fluid communication with the mixing chamber, and an afterburner system disposed within the thermal oxidizer chamber, and, in some cases, an expansion chamber in fluid communication with the thermal oxidizer chamber. A plurality of mixing baffles may be disposed within the expansion chamber. A blower may be disposed downstream of the expansion chamber, the blower being configured to draw a vacuum on the expansion chamber, thermal oxidizer chamber, and mixing chamber. [13] The device may also include a secondary retort in fluid communication with the retort and configured to receive solid residues from the main retort. The secondary retort is preferably mounted on expansion rollers to allow relative movement of the main retort and secondary retort. This mounting technique allows the secondary retort and main retort to be connected by a rigid conduit. [14] In another aspect, the invention features methods of utilizing the devices disclosed herein. For example, the invention features a method comprising (a) delivering a feedstock to a main retort that is disposed within a combustion chamber containing one or more burners; (b) utilizing the burners to generate hot flue gases and thereby at least partially pyrolyze the feedstock, generating syngas; and (c) drawing the flue gases and syngas into a mixing chamber by applying a negative pressure to the main retort and combustion chamber. [15] Some implementations of the method may include one or more of the following features. [16] The method may further include (d) exhausting the flue gases from the combustion chamber through a flue gas relief duct having a first end in sealing fluid communication with the combustion chamber and a second end in fluid communication with the mixing chamber; and (e) exhausting the syngas from the main retort through a syngas relief duct disposed within the line gas relief duct, the syngas relief duct having a first end in fluid connnmiication with the main retort and a second end in fluid communication with the mixing chamber. DESCRIPTION OF THE DRAWINGS [17] FIG. 1 is a schematic diagram of a pyrolysis unit according to one implementation of the invention. [18] FIG. 2 is a schematic diagram of an expansion chamber in fluid communication with the pyrolysis unit shown in FIG. 1.DETAILED DESCRIPTION [19] A pyrolysis unit 10 is shown in FIG. 1. Pyrolysis unit 10 may be used to perform the initial pyrolysis step in a pyrolysis system that includes a thermal oxidizer unit and stack unit (not shown.) As noted above, the pyrolysis unit routes syngas discharge in a manner that reduces maintenance of the unit, routes flue gases in a manner that recovers their heat and eliminates discharge of flue gas to the environment, and includes other features which enhance the commercial viability of the pyrolysis system. [20] The pyrolysis unit 10 includes a combustion chamber 12, which is made from materials capable of withstanding temperatures of 1200-2600° F. Burners 14 are positioned within

3

US 2015/0166911 A1
the combustion chamber. These burners may be natural gas or propane-fired and are adapted to generate and supply hot combustion gases into the combustion chamber. While two burners are illustrated, more or fewer could be provided. [21] A main retort 16 is disposed within the combustion chamber 12. Pyrolysis of the feed material takes place in this main retort, producing pyrolysis gases, referred to herein as syngas. The main retort 16 includes slots or other openings (not shown) in its upper surface, which are in fluid communication with a syngas conduit 17. The main retort has a generally cylindrical cross section and contains a conveying element configured to convey a feedstock through the retort, shown in FIG. 1 as screw 18. The main retort 16 has a feed end 20 and a discharge end 22. The feed end and discharge end of the retort extend through the proximal and distal ends, respectively, of the combustion chamber 12. The screw 18 is adapted to be axially rotated to move material from the feed end to the discharge end of the retort. [22] Feedstock is delivered to the main retort at the feed end 20. If the feedstock is a solid material such as, for example, pieces of shredded tire rubber, the feedstock is fed into a solid inlet 24, which may have a fonnel (not shown) to retain the feedstock and direct it into an airlock 26. The funnel may include a level sensor to regulate delivery of feedstock to the main retort for enhanced process control. The pyrolysis unit may also include a liquid feed (not shown). Airlock 26 regulates delivery of the feedstock into the main retort and is adapted to prevent or minimize the admission of oxygen into the main retort. The structure of a suitable airlock is described in detail in U.S. Pat. No. 6,758,150. [23] As the rotating screw 18 conveys the feedstock along the length of the main retort 16 in the direction of the arrow in FIG. 1,the feedstock is subjected to the heat from the burners 14 and to hot combustion gases swirling about the main retort, pyrolyzing the material and generating syngas. [24] This syngas is exhausted (vertical arrow, FIG. 1) through a syngas relief duct 28 in sealed fluid communication with the outlet of the syngas conduit 17. The syngas relief duct is maintained at a negative pressure to draw syngas from the main retort. The syngas relief duct 28 extends vertically from the main retort, and is preferably disposed generally perpendicular (within +/-10 degrees of perpendicular) to a horizontal plane taken through the long axis of main retort, as shown. While it is preferred that the syngas relief duct be generally perpendicular to the axis, in some implementations it can be within +/-45 degrees, e.g., within +/-20 degrees of vertical. The syngas relief duct 28 is disposed within a flue gas relief duct 30 that is in sealed fluid communication with the combustion chamber 12. The hot flue gases in the combustion chamber, generated by burners 14, are exhausted from the combustion chamber through the flue gas relief duct 30, keeping the syngas warm as it travels through the syngas relief duct 28, The temperature of the flue gas and the syngas in their respective chambers is relatively close to the temperature of these gases in the combustion chamber, e.g., within +1-25° F, This reduces or eliminates the formation of solid residue (“ clinker”) in the syngas relief duct, minimizing maintenance. The generally vertical position of the syngas relief duct also helps to keep the duct clear by causing any fines to drop back into the main retort rather than being trapped in the duct. [25] The clearance between the walls of the two ducts, and the volumes of the ducts, is selected to maintain a flow rate of from about 30 to 60 feet/sec for both gases. [26] The flue gas then flows into a mixing chamber 32 where it mixes with the syngas, rather than being exhausted to atmosphere. As a result, the heat energy from the flue gas is recovered, enhancing the energy yield of the system. Moreover, emission of hot gases, and potentially particulate, from the

Jun. 18,2015 1
pyrolysis unit to the environment is eliminated, improving environmental compliance of the system. [27] Mixing of the syngas and flue gas is assisted by a mixing baffle 34, after which the gaseous mixture is distributed outwardly by a distribution cone 36. Distribution cone 36 forces the mixture outwardly within the mixing chamber as the mixture flows past combustion air inlet 38. As it passes the combustion air inlet, the syngas/flue gas mixture is further mixed with combustion air. The mixture of the three gases then enters thermal oxidizer chamber 42 where it passes through afterburner burners 40, This routing of the gas mixture causes the mixture to pass through the afterburner burners, igniting the gases. The combustion air inlet 38 is preferably positionedjust upstream of the afterburner burners 40 , as shown, rather than further upstream, to prevent pre-ignition of the gases. In some embodiments, the combustion air inlet is in the form of a ring surrounding the chamber 42. [28] Referring to FIG. 2, after passing through the afterburner burners 40,the gas mixture flows into an afterburner expansion chamber 42 which includes a plurality of mixing baffles 43 which tumble and mix the gas, giving the gas time to be completely or substantially completely combusted and thereby reducing emissions from the system. The gas mixture then travels through a blower 45, which imposes a negative pressure on the thermal oxidizer chamber and combustion air inlet, and may be exhausted to a stack. In some implementations, the pyrolysis system may include an apparatus for recovering energy from the syngas and flue gas. For example, the discharge from the thermal oxidizer unit may be supplied to a boiler where water is heated to produce steam. This and other methods of heat recovery from pyrolysis are well known, and are discussed, e.g., in U.S. Pat. No. 6,758,150. [29] The solid material that remains after pyrolysis of the feedstock in the main retort (carbon char) falls though a conduit 44 at the discharge end of the main retort into the feed end 46 of a secondary retort 48, which is disposed outside of the combustion chamber 12 and directly below the main retort. As it passes through the secondary retort 48, conveyed by a screw 50, the solid material cools, allowing it to be safely exhausted without danger of ignition. Some llirther pyrolysis may also take place in the secondary retort, due to residual heat in the solid material. [30] To provide for thermal expansion of the conduit 44, and for relative movement between the main retort 16 and secondary retort 48 due to differential thermal expansion, thermal expansion rollers 52 may be provided both at the endof the main retort adjacent the transition to the secondary retort and below and supporting the secondary retort, as shown. These thermal expansion rollers provide for a degree of vertical and lateral movement between the main and secondary retort segments. The thermal expansion rollers are supported on a framework (not shown.) [31] Near the discharge end of the secondary retort is a discharge 54 including a dischai^e airlock 26. Material conveyed to the discharge 54 by the screw 50 is discharged from the pyrolysis unit 10 through the airlock 26 into a suitable container. The length of the secondary retort is selected so that by the time the solid material is dischai^ed pyrolysis of the material is substantially complete and the material has cooled, preferably to a temperature of less than about 220° F. [0032】 Various sensors may be provided to control the operation of the pyrolysis system, as is well known. [33] The systems and methods disclosed herein are adapted to destroy most forms of organic waste material, e.g., solid waste, liquid waste, hazardous waste, industrial wastes, and all forms of volatile organic compounds (VOCs). The systems and methods can be used to process hydrocarbons, PCB ’s,rubber, chlorides,

US 2015/0166911 A1
herbicides, pesticides, plastics, wood and paper. The pyrolysis process breaks down the waste material into gas and carbon char. The carbon char may be recycled for use in any application that utilizes carbon, for example in inks or paints, as activated carbon, in tires, and many other products. OTHER EMBODIMENTS [34] A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other embodiments are within the scope of the following claims. 1. A pyrolysis device comprising: a combustion chamber containing one or more burners configured to generate hot flue gases; a main retort, disposed within the combustion chamber, configured to at least partially pyrolyze a feedstock delivered to the retort, thereby generating syngas; and a mixing chamber, into which the syngas and flue gases flow; a flue gas relief duct having a first end in sealing fluid communication with the combustion chamber and a second end in fluid communication with the mixing chamber; and disposed within the flue gas relief duct, a syngas relief duct having a first end in fluid communication with the main retort and a second end in fluid communication with the mixing chamber. 2. (canceled) 3. The device of claim 1 wherein a long axis of the syngas relief duct is disposed generally perpendicular to a horizontal plane taken through a long axis of the main retort. 4. The device of claim 3 wherein a long axis of the flue gas relief duct is also disposed generally perpendicular to the horizontal plane. 5. The device of claim 1 further comprising a mixing baffle and distribution cone within the mixing chamber, configured to direct gas outwardly within the mixing chamber. 6. The device of claim 5 further comprising a combustion gas inlet and an afterburner element positioned downstream of the distribution cone. 7. The device of claim 1 further comprising a secondary retort in fluid communication with the retort and configured to receive solid residues from the main retort. 8. The device of claim 7 wherein the secondary retort is mounted on expansion rollers to allow relative movement of the main retort and secondary retort. 9. The device of claim 8 wherein the secondary retort and main retort are connected by a rigid conduit. 10. The device of claim 1 further comprising a thermal oxidizer chamber in fluid commimication with the mixing chamber, and an afterburner system disposed within the thermal oxidizer chamber. 11. The device of claim 1 wherein, during use, the temperature of the gases within the flue gas relief duct and the syngas relief duct is within +/-25 degrees F. of the temperature of the flue gas and syngas in the combustion chamber and main retort, respectively. 12. The device of claim 10 further comprising an expansion chamber in fluid communication with the thermal oxidizer chamber. 13. The device of claim 12 further comprising a plurality of mixing baffles disposed within the expansion chamber. 14. The device of claim 12 llirther comprising, downstream of the expansion chamber, a blower configured to draw a vacuum on the expansion chamber, thermal oxidizer chamber, and mixing chamber. 15. The device of claim 1 wherein the clearance between an outer wall of the syngas relief duct and an inner wall of the flue

Jun. 18,2015 1
gas relief duct is selected such that the flow rate of the gases within the ducts is from about 30 to 60 feet/second. 16. A method comprising: delivering a feedstock to a main retort that is disposed within a combustion chamber containing one or more burners; utilizing the burners to generate hot flue gases and thereby at least partially pyrolyze the feedstock, generating syngas; drawing the flue gases and syngas into a mixing chamber by applying a negative pressure to the main retort and combustion chamber; and exhausting the flue gases from the combustion chamber through a flue gas relief duct having a first end in sealing fluid communication with the combustion chamber and a second end in fluid communication with the mixing chamber; and exhausting the syngas from the main retort through a syngas relief duct disposed within the flue gas relief duct, the syngas relief duct having a first end in fluid communication with the main retort and a second end in fluid cormnunication with the mixing chamber. 17. (canceled) 18. The method of claim 16 wherein a long axis of the syngas relief duct is disposed generally perpendicular to a horizontal plane taken through a long axis of the main retort. 19. The method of claim 18 wherein a long axis of the flue gas relief duct is also disposed generally perpendicular to the horizontal plane.
* * * * *


相关文章:
生物质转化为清洁能源(中英文)
生物质转化为清洁能源(中英文)_能源/化工_工程科技_专业资料。化工专业英语 中英文翻译 储运专业英语 热解系统 申请人 发明者 应用编号: 归档时间 弗兰克?帕索罗...
生物质清洁能源的综述
3、主要的生物质清洁能源的分类 生物质能转化为优质燃料生物质主要分为三类, 即生物质液体燃 料、生物质气体燃料和固体燃料。生物质制乙醇的技术已基本成熟, 进入...
清洁能源之生物质能
清洁能源生物质能_能源/化工_工程科技_专业资料。介绍...物质的转 化难突破 风能 太阳能 地热 有时间和 ...英文个人简历模板 创意简历模板汇集 推理型题分析与总...
生物质能源考试复习题
煤、石油和天然气等化石能源也是由生物质能转变而来的...燃料乙醇是燃烧清洁的高辛烷值燃料,是可 再生能源。...英文个人简历模板 创意简历模板汇集 推理型题分析与总结...
清洁能源
清洁汽车动力技术(中国可再生能源的发展状况) 姓名:王成龙 学号:13121339 专业:...生物质能源按 照生物质的特点及转化方式可分为固体生物质燃料、液体生物质燃料...
生物质转化技术复习资料
生物质转化技术复习资料_能源/化工_工程科技_专业资料。1. 能源:可再生能源与不可再生能源;清洁能源:风能、太阳能、水能等。 生物质能:是直接或间接地通过绿色植物...
清洁能源
清洁能源 2页 免费如要投诉违规内容,请到百度文库投诉中心;如要提出功能问题或意见...利用生物发酵或酸水解技术,在一定条件下,将生物质转化加工成乙醇,供汽车和其 ...
混合热解气化过程和废物处理系统(内含PDF英文文件)
混合热解气化过程和废物处理系统(内含PDF英文文件)_能源/化工_工程科技_专业资料。生物质转化为清洁能源 化工专业英语 能源专业英语 ...
清洁能源与技术
试述未来能源邻域的发展趋势: “开源节流” “开源”指的是:1)拓宽常规能源...生物质的利用形式主要有哪几类 直接燃烧、热化学转化、生物化学转化 ? 生物质...
大连继续教育考试试题及答案(低碳)
A 非化石能源 B 非传统能源 C 生物质能源 D 非...( )的指导思想是引导企业、地方和行业领导者转变...《清洁能源与安全法案》中,关于减少全球变暖污染的...
更多相关标签:
生物质能源转化技术 | 生物质 清洁能源 | 生物质能源 | 生物质能源燃料 | 生物质能源网 | 供应生物质能源 | 生物质能源上市公司 | 中国生物质能源网 |