当前位置:首页 >> 学科竞赛 >>

全国中学生物理竞赛集锦(力学)


全国中学生物理竞赛集锦(力学)
第 21 届预赛(2004.9.5)
二、(15分)质量分别为m1和m2的两个小物块用轻绳连 结,绳跨过位于倾角? =30?的光滑斜面顶端的轻滑轮, 滑轮与转轴之间的磨擦不计,斜面固定在水平桌面上, 如图所示。第一次,m1悬空,m2放在斜面上,用t表示m2 自斜面底端由静止开始运动至斜面顶端所需的时间。第 二次,将m1和m2位置

互换,使m2悬空,m1放在斜面上, 发现m1自斜面底端由静止开始运动至斜面顶端所需的时 间为t/3。求ml与m2之比。

七、(15分)如图所示,B是质量为mB、半 径为R的光滑半球形碗,放在光滑的水平桌 面上。A是质为mA的细长直杆,被固定的光 滑套管C约束在竖直方向,A可自由上下运 动。碗和杆的质量关系为:mB=2mA。初始 时,A杆被握住,使其下端正好与碗的半球 面 的上边缘接触(如图)。然后从静止 开始释放A,A、B便开始运动。设A 杆的位置用? 表示,? 为碗面的球心 O至A杆下端与球面接触点的连线方 向和竖直方向之间的夹角。求A与B 速度的大小(表示成? 的函数)。 九、(18分)如图所示,定滑轮B、C与动滑轮D组成 一滑轮组,各滑轮与转轴间的摩擦、滑轮的质量均不 计。在动滑轮D上,悬挂有砝码托盘A,跨过滑轮组的 不可伸长的轻线的两端各挂有砝码2和3。一根用轻线 (图中穿过弹簧的那条坚直线)拴住的压缩轻弹簧竖 直放置在托盘底上,弹簧的下端与托盘底固连,上端 放有砝码1(两者未粘连)。已加三个砝码和砝码托盘 的质量都是m,弹簧的劲度系数为k,压缩量为l0,整个 系统处在静止状态。现突然烧断栓住弹簧的轻线,弹 簧便伸长,并推动砝码1向上运动,直到砝码1与弹簧 分离。假设砝码1在以后的运动过程中不会与托盘的顶 部相碰。求砝码1从与弹簧分离至再次接触经历的时 间。

第 21 届复赛
二、(20 分) 两颗人造卫星绕地球沿同一椭圆轨道同向运动,它们通过轨道上同一点的时间 相差半个周期.已知轨道近地点离地心的距离是地球半径 R 的 2 倍,卫星通过近地点时的 速度 v ? 3 GM 4 R ,式中 M 为地球质量,G 为引力常量.卫星上装有同样的角度测量仪, 可测出卫星与任意两点的两条连线之间的夹角. 试设计一种测量方案, 利用这两个测量仪测 定太空中某星体与地心在某时刻的距离. (最后结果要求用测得量和地球半径 R 表示)

六、(20 分)如图所示,三个质量都是 m 的刚性小球 A、B、C 位 于光滑的水平桌面上(图中纸面) ,A、B 之间,B、C 之间分别 用刚性轻杆相连,杆与 A、B、C 的各连接处皆为“铰链式”的 (不能对小球产生垂直于杆方向的作用力) .已知杆 AB 与 BC 的 夹角为??? ,??< ?/2.DE 为固定在桌面上一块挡板,它与 AB 连线方向垂直.现令 A、B、C 一起以共同的速度 v 沿平行于 AB 连线方向向 DE 运动,已知在 C 与挡板碰撞过程中 C 与挡板之间 无摩擦力作用,求碰撞时当 C 沿垂直于 DE 方向的速度由 v 变为 0 这一极短时间内挡板对 C 的冲量的大小.

D B A
A

????

A

C
A A

E

第二十届预赛(2003 年 9 月 5 日)
五、(20 分)有一个摆长为 l 的摆(摆球可视为质点,摆线的质量不 计) ,在过悬挂点的竖直线上距悬挂点 O 的距离为 x 处(x<l)的 C 点有一固定的钉子,如图所示,当摆摆动时,摆线会受到钉子 的阻挡.当 l 一定而 x 取不同值时,阻挡后摆球的运动情况将不 同.现将摆拉到位于竖直线的左方(摆球的高度不超过 O 点) ,然 后放手,令其自由摆动,如果摆线被钉子阻挡后,摆球恰巧能够 击中钉子,试求 x 的最小值. 六、(20 分)质量为 M 的运动员手持一质量为 m 的物块,以速率 v0 沿与水平面成 a 角的方向向前跳跃 (如图) 为了能跳得更远一点, . 运动员可在跳远全过程中的某一位置处,沿某一方向把物块抛 出.物块抛出时相对运动员的速度的大小 u 是给定的,物块抛出 后,物块和运动员都在同一竖直平面内运动. (1)若运动员在跳远的全过程中的某 时刻 to 把物块沿与 x 轴负方向成某 θ 角的 方向抛出,求运动员从起跳到落地所经历 v0 的时间. (2)在跳远的全过程中,运动员在何处 把物块沿与 x 轴负方向成 θ 角的方向抛出, 能使自己跳得更远?若 v0 和 u 一定,在什 么条件下可跳得最远?并求出运动员跳的 最大距离.

第二十届复赛
三、 (20 分) 有人提出了一种不用火箭发射人造地球卫星的设想. 其 设想如下:沿地球的一条弦挖一通道,如图所示.在通道的两个出 口处 A 和 B ,分别将质量为 M 的物体和质量为 m 的待发射卫星同 时自由释放,只要 M 比 m 足够大,碰撞后,质量为 m 的物体,即 待发射的卫星就会从通道口 B 冲出通道; 设待发卫星上有一种装置, 在待发卫星刚离开出口 B 时,立即把待发卫星的速度方向变为沿该 处地球切线的方向,但不改变速度的大小.这样待发卫星便有可能 绕地心运动,成为一个人造卫星.若人造卫星正好沿地球表面绕地 心做圆周运动, 则地心到该通道的距离为多少?己知 M =20 m , 地球半径 R 0 =6400 km. 假 定地球是质量均匀分布的球体,通道是光滑的,两物体间的碰撞是弹性的.

五、(22 分)有一半径为 R 的圆柱 A,静止在水平地面上,并与竖直墙面 相接触.现有另一质量与 A 相同,半径为 r 的较细圆柱 B,用手扶着圆 柱 A,将 B 放在 A 的上面,并使之与墙面相接触,如图所示,然后放 手. 己知圆柱 A 与地面的静摩擦系数为 0.20, 两圆柱之间的静摩擦系数 为 0.30.若放手后,两圆柱体能保持图示的平衡,问圆柱 B 与墙面间的 静摩擦系数和圆柱 B 的半径 r 的值各应满足什么条件? 七、(25 分)如图所示,将一铁饼状小物块在离地面高为 h 处 沿水平方向以初速 v 0 抛出. 己知物块碰地弹起时沿竖直方向 的分速度的大小与碰前沿竖直方向的分速度的大小之比为 e (<1) .又知沿水平方向物块与地面之间的滑动摩擦系数 为 ? (≠0) :每次碰撞过程的时间都非常短,而且都是“饼 面”着地.求物块沿水平方向运动的最远距离.

第十九届预赛(2002 年 9 月 5 日)
一、 (15 分)今年 3 月我国北方地区遭遇了近 10 年来最严重的沙尘暴天气.现把沙尘上扬 后的情况简化为如下情景:v 为竖直向上的风速, 沙尘颗粒被扬起后悬浮在空中 (不动) 这 . 时风对沙尘的作用力相当于空气不动而沙尘以速度 v 竖直向下运动时所受的阻力. 此阻力可 用下式表达
f ? ?? Av
2

其中 ? 为一系数, A 为沙尘颗粒的截面积, ? 为空气密度. (1)若沙粒的密度 ? S ? 2 .8 ? 1 0 3 k g ? m - 3 ,沙尘颗粒为球形,半径 r ? 2.5 ? 10 - 4 m ,地球 表面处空气密度 ? 0 ? 1.25 kg ? m - 3 , ? ? 0.45 ,试估算在地面附近,上述 v 的最小值 v1 . (2) 假定空气密度 ? 随高度 h 的变化关系为 ? ? ? 0 (1 ? C h ) , 其中 ? 0 为 h ? 0 处的空气密度,
C 为一常量, C ? 1 .1 8 ? 1 0
?4

m

-1

,试估算当 v ? 9 .0 m ? s-1 时扬沙的最大高度. (不考虑重

力加速度随高度的变化) 三、 (20 分)据新华社报道,为了在本世纪初叶将我国的航天员送上太空,2002 年 3 月 25 日 22 时 15 分,我国成功地发射了一艘无人试验飞船。在完成预定任务后,飞船于 4 月 1 日 16 时 51 分安全着陆,共绕地球飞行 108 圈。 (1)飞船的名称是什么? (2)飞船在运行期间,按照地面指挥控制中心的指令成功地实施了数百个动作,包括从椭 圆轨道变换成圆轨道等.假如把飞船从发射到着陆的整个过程中的运动都当作圆周运动处 理,试粗略估计飞船离地面的平均高度.已知地球半径 R ? 6 .3 7 ? 1 0 6 m ,地球表面处的重 力加速度 g ? 9 .8 0 m ? s - 2

七、 (25 分)如图预 19-7 所示,在长为 l ? 1 . 0 m、质量为 m B ? 3 0 .0 k g 的车厢 B 内的 右壁处,放一质量 m A ? 20.0 kg 的小物块 A(可视为质点) ,向右的水平拉力 F ? 1 2 0 .0 N 作 用于车厢,使之从静止开始运动,测得车厢 B 在最初 2.0 s 内移动的距离 s ? 5 .0 m ,且在这 段时间内小物块未与车厢壁发生过碰撞. 假定车厢与地面间的摩擦忽略不计, 小物块与车厢 壁之间的碰撞是弹性的.求车厢开始运动后 4.0 s 时,车厢与小物块的速度.

第十九届复赛
一、 (20 分)某甲设计了 1 个如图复 19-1 所示的“自动喷泉”装置,其中 A、B、C 为 3 个 容器,D、E、F 为 3 根细管,管栓 K 是关闭的.A、B、C 及细管 D、 E 中均盛有水,容器水面的高度差分别为 h1 和 h1 如图所示.A、B、 C 的截面半径为 12cm,D 的半径为 0.2cm.甲向同伴乙说: “我若拧 开管栓 K,会有水从细管口喷出. ”乙认为不可能.理由是: “低处 的水自动走向高外,能量从哪儿来?”甲当即拧开 K,果然见到有 水喷出, 乙哑口无言, 但不明白自己的错误所在. 甲又进一步演示. 在 拧开管栓 K 前,先将喷管 D 的上端加长到足够长,然后拧开 K,管 中水面即上升,最后水面静止于某个高度处. (1).论证拧开 K 后水柱上升的原因. (2).当 D 管上端足够长时,求拧开 K 后 D 中静止水面与 A 中 水面的高度差. (3).论证水柱上升所需能量的来源.

七、 (26 分)一根不可伸长的细轻绳,穿 上一粒质量为 m 的珠子(视为质点) ,绳 的下端固定在 A 点,上端系在轻质小环 上,小环可沿固定的水平细杆滑动(小环 的质量及与细杆摩擦皆可忽略不计) ,细 杆与 A 在同一竖直平面内.开始时,珠子 紧靠小环, 绳被拉直, 如图复 19-7-1 所示, 已知,绳长为 l , A 点到杆的距离为 h , 绳能承受的最大张力为 T d ,珠子下滑过 程中到达最低点前绳子被拉断, 求细绳被拉断时珠子的位置和速度的大小 (珠子与绳子之间 无摩擦)

注: 质点在平面内做曲线运动时, 它在任一点的加速度沿该点轨道法线方向的分量称为法向 加速度 a n ,可以证明, a n ? v 2 / R , v 为质点在该点时速度 的大小, R 为轨道曲线在该点的“曲率半径” ,所谓平面曲 线上某点的曲率半径, 就是在曲线上取包含该点在内的一段 弧,当这段弧极小时,可以把它看做是某个“圆”的弧,则 此圆的半径就是曲线在该点的曲率半径. 如图复 19-7-2 中曲 线在 A 点的曲率半径为 R A ,在 B 点的曲率半径为 R B . 第十八届预赛 2001-09-09 一、(15 分)如图预 18-l 所示,杆 O A 长为 R ,可绕过 O 点的水平轴在竖直平面内转动, 其端点 A 系着一跨过定 滑轮 B 、C 的不可伸长的轻绳,绳的另一端系一物块 M , 滑轮的半径可忽略, B 在 O 的正上方, O B 之间的距离为 H 。某一时刻,当绳的 B A 段与 O B 之间的夹角为 ? 时, 杆的角速度为 ? ,求此时物块 M 的速率 v M 。

五、 (25 分)如图预 18-5 所示,一质量为 M 、长为 L 带 薄挡板 P 的木板,静止在水平的地面上,设木板与地面间 的静摩擦系数与滑动摩擦系数相等,皆为 ? .质量为 m 的 人从木板的一端由静止开始相对于地面匀加 速地向前走向另一端, 到达另一端时便骤然抓 住挡板 P 而停在木板上. 已知人与木板间的静 摩擦系数足够大,人在木板上不滑动.问:在 什么条件下, 最后可使木板向前方移动的距离 达到最大?其值等于多少? 第十八届复赛 六、 分) (27 一玩具 “火箭” 由上下两部分和一短而硬 (即劲度系数很大) 的轻质弹簧构成. 上 部分 G1 的质量为 m1 ,下部分 G 2 的质量为 m 2 ,弹簧夹在 G1 与 G 2 之间,与二者接触而不固 连.让 G1 、 G 2 压紧弹簧,并将它们锁定,此时弹簧的弹性势能为己知的定值 E 0 .通过遥 控可解除锁定,让弹簧恢复至原长并释放其弹性势能,设这—释放过程的时间极短.第一种 方案是让玩具位于一枯井的井口处并处于静止状态时解除锁定,从而使上部分 G1 升空.第 二种方案是让玩具在井口处从静止开始自由下落,撞击井底(井足够深)后以原速率反弹, 反弹后当玩具垂直向上运动到离井口深度为某值 h 的时刻解除锁定. 1.在第一种方案中,玩具的上部分 G1 升空到达的最大高度(从井口算起)为多少?其 能量是从何种形式的能量转化来的? 2.在第二种方案中,玩具的上部分 G1 升空可能达到的最大高度(亦从井口算起)为多 少?并定量地讨论其能量可能是从何种形式的能量转化来的.

第十七届预赛 2000 年 二、 (15 分)一半径为 R ? 1.00 m 的水平光滑圆桌面,圆心为 O ,有一竖直的立柱固定在桌 面上的圆心附近,立柱与桌面的交线是一条凸的平滑的封闭曲线 C ,如图预 17-2 所示。一 根不可伸长的柔软的细轻绳,一端固定在封闭曲线上的某 一点,另一端系一质量为 m ? 7.5 ? 10- 2 kg 的小物块。将小 物块放在桌面上并把绳拉直,再给小物块一个方向与绳垂 直、大小为 v 0 ? 4 .0 m /s 的初速度。物块在桌面上运动时, 绳将缠绕在立柱上。已知当绳的张力为 T0 ? 2 .0 N 时,绳即 断开,在绳断开前物块始终在桌面上运动. 1.问绳刚要断开时,绳的伸直部分的长度为多少? 2.若绳刚要断开时,桌面圆心 O 到绳的伸直部分与封闭曲线的接触点的连线正好与绳的伸 直部分垂直,问物块的落地点到桌面圆心 O 的水平距离为多少?已知桌面高度 H ? 0.80 m .物 块在桌面上运动时未与立柱相碰.取重力加速度大小为 1 0 m /s 2 .

八、 (20 分)如图预 17-8 所示,在水平桌面上 C 放有长木板 C , 上右端是固定挡板 P , C 上 在 左端和中点处各放有小物块 A 和 B , A 、 B 的 尺寸以及 P 的厚度皆可忽略不计, A 、 B 之间 和 B 、 P 之间的距离皆为 L 。设木板 C 与桌面 之间无摩擦, A 、 C 之间和 B 、 C 之间的静摩擦因数及滑动摩擦因数均为 ? ; A 、 B 、 C (连同挡板 P )的质量相同.开始时, B 和 C 静止, A 以某一初速度向右运动.试问下列 情况是否能发生?要求定量求出能发生这些情况时物块 A 的初速度 v 0 应满足的条件,或定 量说明不能发生的理由. (1)物块 A 与 B 发生碰撞; (2)物块 A 与 B 发生碰撞(设为弹性碰撞)后,物块 B 与挡板 P 发生碰撞; (3)物块 B 与挡板 P 发生碰撞(设为弹性碰撞)后,物块 B 与 A 在木板 C 上再发生碰 撞; (4)物块 A 从木板 C 上掉下来; (5)物块 B 从木板 C 上掉下来. 第十七届复赛 四、 (25 分)宇宙飞行器和小行星都绕太阳在同一平面内做圆周运动,飞行器的质量比小行 星的质量小得很多,飞行器的速率为 v 0 ,小行星的轨道半径为飞行器轨道半径的 6 倍.有 人企图借助飞行器与小行星的碰撞使飞行器飞出太阳系,于是他便设计了如下方案:Ⅰ. 当 飞行器在其圆周轨道的适当位置时, 突然点燃飞行器上的喷气发动机, 经过极短时间后立即 关闭发动机,以使飞行器获得所需的速度,沿圆周轨道的切线方向离开圆轨道;Ⅱ. 飞行器 到达小行星的轨道时正好位于小行星的前缘,速度的方向和小行星在该处速度的方向相同, 正好可被小行星碰撞;Ⅲ. 小行星与飞行器的碰撞是弹性正碰,不计燃烧的燃料质量.

1.试通过计算证明按上述方案能使飞行器飞出太阳系; 2.设在上述方案中,飞行器从发动机取得的能量为 E 1 .如果不采取上述方案而是令飞 行器在圆轨道上突然点燃喷气发动机, 经过极短时间后立即关闭发动机, 以使飞行器获得足 够的速度沿圆轨道切线方向离开圆轨道后能直接飞出太阳系. 采用这种办法时, 飞行器从发 动机取得的能量的最小值用 E 2 表示,问 第十六届预赛 1999 年 二、 (15 分)一质量为 M 的平顶小车,以速度 v 0 沿水平的光滑轨道作匀速直线运动。现将 一质量为 m 的小物块无初速地放置在车顶前缘。已知物块和车顶之间的动摩擦系数为 ? 。 1. 若要求物块不会从车顶后缘掉下,则该车顶最少要多长? 2. 若车顶长度符合 1 问中的要求,整个过程中摩擦力共做了多少功? 七、 (15 分)将一根长为 100 多厘米的均匀弦线,沿水平的 x 轴放置,拉紧并使两端固定。 现对离固定的右端 25cm 处(取该处为原点 O ,如图预 16-7-1 所示)的弦上一点施加一个沿 垂直于弦线方向(即 y 轴方向)的扰动,其位移随时间的变化规律如图预 16-7-2 所示。该 扰动将沿弦线传播而形成波(孤立的脉冲波) 。已知该波在弦线中的传播速度为 2 .5 cm /s , 且波在传播和反射过程中都没有能量损失。 1. 试在图预 16-7-1 中准确地画出自 O 点沿弦向右传播的波在 t ? 2.5 s 时的波形图。 2. 该波向右传播到固定点时将发生反射,反射波向左传播,反射点总是固定不动的。 这 可看成是向右传播的波和向左传播的波相叠加,使反射点的位移始终为零。由此观点出发, 试在图预 16-7-1 中准确地画出 t ? 12.5 s 时的波形图。 3. 在图预 16-7-1 中准确地画出 t ? 10.5 s 时的波形图。
E1 E2

为多少?

八、 (15 分)1997 年 8 月 26 日在日本举行的国际天文学会上,德国 Max Planck 学会的一个 研究组宣了他们的研究成果:银河系的中心可能存在一个在黑洞。他们的根据是用口径为 3.5m 的天文望远镜对猎户座中位于银河系中心附近的星体进行近六年的观测所得到的数 据,他们发现,距离银河系中心约 60 亿公里的星体正以 2000 km /s 的速度围绕银河系中心 旋转。根据上面的数据,试在经典力学的范围内(见提示 2) ,通过计算确认,如果银河系 中心确实存在黑洞的话,其最大半径是多少。 (引力常数 G ? 6.67 ? 10 - 20 km 3 ? kg -1 ? s - 2 ) 提示:1. 黑洞是一种密度极大的天体,其表面的引力是如此之强,以至于包括光在内 的所有物质都不了其引力作用。 2.计算中可以采用拉普拉斯经典黑洞模型,在这种模型中,在黑洞表面上的所 有物质,即使初速度等于光速 c 也逃脱不了其引力的作用。 九、 分) (20 一个大容器中装有互不相溶的两种液体, 它们的密度分别为 ? 1 和 ? 2( ? 1 ? ? 2 ) 。 现让一长为 L 、密度为 ( ? 1 ? ? 2 ) 的均匀木棍,竖直地放在上面的液体内,其下端离两液体
2 1

分界面的距离为

3 4

L ,由静止开始下落。试计算木棍到达最低处所需的时间。假定由于木棍

运动而产生的液体阻力可以忽略不计, 且两液体都足够深, 保证木棍始终都在液体内部运动, 未露出液面,也未与容器相碰。 第十六届复赛 四、 (20 分)经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对 它们的研究, 使我们对宇宙中物质的存在形势和分布情况有了较深刻的认识。 双星系统由两 个星体构成, 其中每个星体的线度都远小于两星体之间的距离。 一般双星系统距离其他星体 很远,可以当作孤立系统处理。 现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是 M ,两 者相距 L 。他们正绕两者连线的中点作圆周运动。 1. 试计算该双星系统的运动周期 T 计 算 。
) 2. 若实验上观测到的运动周期为 T 观 测 , T观 测 :T 计 算 ?1: N ( N 1? 且

。 为了解释 T 观 测

与 T 计 算 的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗 物质。 作为一种简化模型, 我们假定在这两个星体连线为直径的球体内均匀分布着这种暗物 质, 而不考虑其它暗物质的影响。 试根据这一模型和上述观测结果确定该星系间这种暗物质 的密度。 六、 (25 分)如图复 16-6 所示,z 轴竖直向上,xy 平 面是一绝缘的、固定的、刚性平面。在 A ( x 0 , 0, 0) 处放 一带电量为 ? q ( q ? 0 ) 的小物块,该物块与一细线相 连, 细线的另一端 B 穿过位于坐标原点 O 的光滑小孔, 可通过它牵引小物块。现对该系统加一匀强电场,场 强方向垂直与 x 轴,与 z 轴夹角为 ? (如图复 16-6 所 示) 。设小物块和绝缘平面间的摩擦系数为 ? ? tan ? , 且静摩擦系数和滑动摩擦系数相同。不计重力作用。 现通过细线来牵引小物块,使之移动。在牵引过程中, 我们约定:细线的 B 端只准沿 z 轴向下缓慢移动,不 得沿 z 轴向上移动;小物块的移动非常缓慢,在任何 时刻,都可近似认为小物块处在力平衡状态。若已知 小物块的移动轨迹是一条二次曲线,试求出此轨迹方程。


相关文章:
全国中学生物理竞赛集锦(力学)
全国中学生物理竞赛集锦(力学)_学科竞赛_高中教育_教育专区。力学集锦全国中学生物理竞赛试题 21 到 25 届(力学) 第 21 届全国中学生物理竞赛预赛题试卷 二、(15...
全国中学生物理竞赛集锦(力学)
全国中学生物理竞赛集锦(力学)全国中学生物理竞赛集锦(力学)隐藏>> 全国中学生物理竞赛集锦(力学)第 21 届预赛(2004.9.5)七、(15分)如图所示,B是质量为mB、半径...
全国中学生物理竞赛集锦(力学)
中学生物理竞赛集锦中学生物理竞赛集锦隐藏>> 全国中学生物理竞赛集锦(力学)第 21 届预赛(2004.9.5)二、(15分)质量分别为m1和m2的两个小物块用轻绳连 结,绳...
全国中学生物理竞赛集锦(力学)
全国中学生物理竞赛集锦(力学)_初三理化生_理化生_初中教育_教育专区。全国中学生物理竞赛集锦(力学) 全国中学生物理竞赛集锦(力学)第 21 届预赛(2004.9.5)二、(...
全国中学生物理竞赛集锦(力学)
8页 免费 全国中学生物理竞赛集锦(原... 4页 免费如要投诉违规内容,请到百度文库投诉中心;如要提出功能问题或意见建议,请点击此处进行反馈。 ...
全国中学生物理竞赛集锦(力学)
全国高中物理竞赛模拟题(力学部分) 全国高中物理竞赛模拟题(力学部分) 1.在图 1 中,反映物体受平衡力作用的图线是: (图 VX 表示沿 X 轴的分速度) 2.某人...
全国中学生物理竞赛集锦(力学)
全国中学生物理竞赛集锦(力学)_初三理化生_理化生_初中教育_教育专区。物理竞赛全国中学生物理竞赛集锦(力学) 全国中学生物理竞赛集锦(力学)第 21 届预赛(2004. 二...
全国中学生物理竞赛集锦(力学)答案
物理竞赛物理竞赛隐藏>> 全国中学生物理竞赛集锦(力学) 全国中学生物理竞赛集锦(力学)答案第 21 届预赛(2004. 二、第一次,小物块受力情况如图所示,设T1为绳中张...
全国中学生物理竞赛集锦力学 新课标 人教版
全国中学生物理竞赛集锦(力学)全国中学生物理竞赛集锦(力学)隐藏>> 全国中学生物理竞赛集锦力学第 21 届预赛(2004.9.5) 二, (15分) 质量分别为m1和m2的两个小...
更多相关标签:
中学生趣味力学竞赛 | 全国中学生物理竞赛 | 中学生物理竞赛 | 全国中学生物理竞赛网 | 33全国中学生物理竞赛 | 第33届中学生物理竞赛 | 2016中学生物理竞赛 | 33届中学生物理竞赛 |