当前位置:首页 >> 其它课程 >>

数据结构与算法


第1章数据结构与算法

考点1
【考点精讲】 1.算法的基本概念

算法的复杂度

数据(data): 是对客观事物的符号表示, 在计算机中科学中指所有能输入到计算机中并被计算机程序处理的符号 总称。 数据元素(data element):是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。 数据对

象(data object):是性质相同的数据元素的集合,是数据的一个子集。 数据结构(data structure):是相互之间存在一种或多种特定关系的数据元素的集合。 存储结构:数据结构在计算机中的表示(又称映射)称为数据的物理结构,又称存储结构。 数据类型(data type):一个值得集合和定义在这个值集上的一组操作的总称。 算法(algorithm)是对特定问题求解步骤的一种描述,它是指令的有限序列,其中每一条指令都表示一个或多个 操作。 算法的 5 种重要特性:有穷性、确定性、可行性、输入、输出。 算法的设计要求:正确性(correctness)、可读性(readability)、健壮性(robustness)效率与低存储需求。 计算机算法为计算机解题的过程实际上是在实施某种算法。 算法的基本特征:可行性、确定性、有穷性、拥有足够的情报。 基本运算和操作包括:算术运算、逻辑运算、关系运算、数据传输。 算法的3种基本控制结构:顺序结构、选择结构、循环结构。 算法基本设计方法:列举法、归纳法、递推、递归、减半递推技术、回溯法。 指令系统:一个计算机系统能执行的所有指令的集合。

2.算法复杂度
算法复杂度包括时间复杂度和空间复杂度。 时间复杂度:执行算法所需要的计算工作量。 空间复杂度:执行这个算法所需要的内存空间。

考点2
【考点精讲】 1.数据结构的基本概念

逻辑结构和存储结构

(1)数据结构:指相互有关联的数据元素的集合。 (2)数据结构研究的3个方面: ① 数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构; ② 在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构; ③ 对各种数据结构进行的运算。

2.逻辑结构
数据的逻辑结构是对数据元素之间的逻辑关系的描述,它可以用一个数据元素的集合和定义在此集合中的若干关系 来表示。数据的逻辑结构有两个要素:一是数据元素的集合,通常记为D;二是D上的关系,它反映了数据元素之间 的前后件关系,通常记为R。一个数据结构可以表示成:B=(D,R)其中B表示数据结构。为了反映D中各数据元素

之间的前后件关系,一般用二元组来表示。 例如,如果把一年四季看作一个数据结构,则可表示成 B =(D,R) D ={春季,夏季,秋季,冬季} R ={(春季,夏季),(夏季,秋季),(秋季,冬季)}

3.存储结构
数据的逻辑结构在计算机存储空间中的存放形式称为数据的存储结构(也称数据的物理结构)。 由于数据元素在计算机存储空间中的位置关系可能与逻辑关系不同,因此,为了表示存放在计算机存储 空间中的各数据元素之间的逻辑关系(即前后件关系),在数据的存储结构中,不仅要存放各数据元素的信息,还 需要存放各数据元素之间的前后件关系的信息。 一种数据的逻辑结构根据需要可以表示成多种存储结构,常用的存储结构有顺序、链接等存储结构。 顺序存储方式主要用于线性的数据结构,它把逻辑上相邻的数据元素存储在物理上相邻的存储单元里,结点之间的 关系由存储单元的邻接关系来体现。 链式存储结构就是在每个结点中至少包含一个指针域,用指针来体现数据元素之间逻辑上的联系。

考点3
【考点精讲】

线性结构和非线性结构

根据数据结构中各数据元素之间前后件关系的复杂程度,一般将数据结构分为两大类型:线性结构与非线性结构。 (1)如果一个非空的数据结构满足下列两个条件: ① 有且只有一个根结点; ② 每一个结点最多有一个前件,也最多有一个后件。 则称该数据结构为线性结构。线性结构又称线性表。在一个线性结构中插入或删除任何一个结点后还应 是线性结构。栈、队列、串等都线性结构。 如果一个数据结构不是线性结构,则称之为非线性结构。数组、广义表、树和图等数据结构都是非线性 结构。 (2)线性表的顺序存储结构具有以下两个基本特点: ① 线性表中所有元素所占的存储空间是连续的; ② 线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。 元素ai的存储地址为:ADR(ai)=ADR(a1)+(i-1)k,ADR(a1)为第一个元素的地址,k代表每个元素 占的字节数。 (3)顺序表的运算:查找、插入、删除。

考点4
【考点精讲】 1.栈的基本概念



栈(stack)是一种特殊的线性表,是限定只在一端进行插入与删除的线性表。 在栈中,一端是封闭的,既不允许进行插入元素,也不允许删除元素;另一端是开口的,允许插入和删除元素。通 常称插入、删除的这一端为栈顶,另一端为栈底。当表中没有元素时称为空栈。栈顶元素总是最后被插入的元素, 从而也是最先被删除的元素;栈底元素总是最先被插入的元素,从而也是最后才能被删除的元素。 栈是按照“先进后出”或“后进先出”的原则组织数据的。 例如,枪械的子弹匣就可以用来形象的表示栈结构。子弹匣的一端是完全封闭的,最后被压入弹匣的子弹总是最先

被弹出,而最先被压入的子弹最后才 能被弹出。

2.栈的顺序存储及其运算
栈的基本运算有三种:入栈、退栈与读栈顶元素。 ①入栈运算:在栈顶位置插入一个新元素。 ②退栈运算:取出栈顶元素并赋给一个指定的变量。 ③读栈顶元素:将栈顶元素赋给一个指定的变量。

考点5
【考点精讲】 1.队列的基本概念

队列

队列是只允许在一端进行删除,在另一端进行插入的顺序表,通常将允许删除的这一端称为队头,允许插入的这一 端称为队尾。 当表中没有元素时称为空队列。 队列的修改是依照先进先出的原则进行的,因此队列也称为先进先出的线性表,或者后进后出的线性表。 例如:火车进遂道,最先进遂道的是火车头,最后是火车尾,而火车出遂道的时候也是火车头先出,最后出的是火 车尾。若有队列:Q =(q1,q2,?,qn) 那么,q1为队头元素(排头元素),qn为队尾元素。队列中的元素是按照q1,q2,?,qn的顺序进入的,退出队列 也只能按照这个次序依次退出,即只有在q1,q2,?,qn-1都退队之后,qn才能退出队列。因最先进入队列的元素 将最先出队,所以队列具有先进先出的特性,体现“先来先服务”的原则。 队头元素q1是最先被插入的元素,也是最先被删除的元素。队尾元素qn是最后被插入的元素,也是最后被删除的元 素。因此,与栈相反,队列又称为“先进先出”(First In First Out,简称FIFO)或“后进后出”(Last In Last Out,简称LILO)的线性表。

2.队列运算
入队运算是往队列队尾插入一个数据元素;退队运算是从队列的队头删除一个数据元素。 队列的顺序存储结构一般采用队列循环的形式。循环队列s=0表示队列空;s=1且front=rear表示队列满。计算循环 队列的元素个数:“尾指针减头指针”,若为负数,再加其容量即可。

考点6
【考点精讲】

链表

在链式存储方式中,要求每个结点由两部分组成:一部分用于存放数据元素值,称为数据域,另一部分用于存放指 针,称为指针域。其中指针用于指向该结点的前一个或后一个结点(即前件或后件)。 链式存储方式既可用于表示线性结构,也可用于表示非线性结构。 (1)线性链表 线性表的链式存储结构称为线性链表。 在某些应用中,对线性链表中的每个结点设置两个指针,一个称为左指针,用以指向其前件结点;另一个称为右指 针,用以指向其后件结点。这样的表称为双向链表。 在线性链表中,各数据元素结点的存储空间可以是不连续的,且各数据元素的存储顺序与逻辑顺序可以不一致。在 线性链表中进行插入与删除,不需要移动链表中的元素。 线性单链表中,HEAD称为头指针,HEAD=NULL(或0)称为空表。

如果是双项链表的两指针:左指针(Llink)指向前件结点,右指针(Rlink)指向后件结点。

线性链表的基本运算:查找、插入、删除。 (2)带链的栈 栈也是线性表,也可以采用链式存储结构。带链的栈可以用来收集计算机存储空间中所有空闲的存储结点,这种带 链的栈称为可利用栈。

考点7

二叉树及其基本性质

【考点精讲】 1.二叉树及其基本概念
树(tree):是 n(>=0)个节点的有限集。 孩子(child):节点的子树的根称为孩子。 兄弟(sibling):同一个双亲的孩子之间互称为兄弟。 深度(depth):树中节点的最大层次称为树的深度。 度(degree):节点拥有的子树称为节点的度。 Huffman 树:又称最优树,是一类带权路劲最短的树。 二叉树是一种很有用的非线性结构,具有以下两个特点: ①非空二叉树只有一个根结点; ②每一个结点最多有两棵子树,且分别称为该结点的左子树和右子树。 在二叉树中,每一个结点的度最大为2,即所有子树(左子树或右子树)也均为二叉树。另外,二叉树中的每个结 点的子树被明显地分为左子树和右子树。 在二叉树中,一个结点可以只有左子树而没有右子树,也可以只有右子树而没有左子树。当一个结点既没有左子树 也没有右子树时,该结点即为叶子结点。 例如,一个家族中的族谱关系如图1-1所示: 图1-1族谱二叉树 A有后代B,C; B有后代D,E; C有后代F; 典型的二叉树如图1-1所示: 下面就图1-1详细讲解二叉树的一些基本概念。 父结点 (根) 子结点和 叶子结点 在树结构中,每一个结点只有一个前件,称为父结点,没有前件的结点只有一个,称为树的根结点,简称 树的根。例如,在图1-1中,结点A是树的根结点。 在树结构中,每一个结点可以有多个后件,称为该结点的子结点。没有后件的结点称为叶子结点。例如, 在图1-1中,结点D,E,F均为叶子结点。

度 深度

在树结构中,一个结点所拥有的后件的个数称为该结点的度,所有结点中最大的度称为树的度。例如,在 图1-1中,根结点A和结点B的度为2,结点C的度为1,叶子结点D,E,F的度为0。所以,该树的度为2。 定义一棵树的根结点所在的层次为1,其他结点所在的层次等于它的父结点所在的层次加1。树的最大层次 称为树的深度。例如,在图1-1中,根结点A在第1层,结点B,C在第2层,结点D,E,F在第3层。该树的深 度为3。 在树中,以某结点的一个子结点为根构成的树称为该结点的一棵子树。

子树

2.二叉树基本性质
二叉树具有以下几个性质: 性质1:在二叉树的第k层上,最多有2k-1(k≥1)个结点; 性质2:深度为m的二叉树最多有2m-1个结点; 性质3:在任意一棵二叉树中,度为0的结点(即叶子结点)总是比度为2的结点多一个。 性质4:具有n个结点的二叉树,其深度至少为[log2n]+1,其中[log2n]表示取log2n的整数部分。

3.满二叉树与完全二叉树
满二叉树:除最后一层外,每一层上的所有结点都有两个子结点。 在满二叉树中,每一层上的结点数都达到最大值,即在满二叉树的第k层上有2k-1个结点,且深度为m的满二叉树有 (2m-1)个结点。 完全二叉树是指这样的二叉树:除最后一层外,每一层上的结点数均达到最大值;在最后一层上只缺少右边的若干 结点。 对于完全二叉树来说,叶子结点只可能在层次最大的两层上出现:对于任何一个结点,若其右分支下的子孙结点的 最大层次为p,则其左分支下的子孙结点的最大层次或为p,或为p+1。 完全二叉树具有以下两个性质: 性质5:具有n个结点的完全二叉树的深度为[log2n]+1。 性质6:设完全二叉树共有n个结点。如果从根结点开始,按层次(每一层从左到右)用自然数1,2,??,n给结 点进行编号,则对于编号为k(k=1,2,??,n)的结点有以下结论: ①若k=1,则该结点为根结点,它没有父结点;若k>1,则该结点的父结点编号为INT(k/2)。 ②若2k≤n,则编号为k的结点的左子结点编号为2k;否则该结点无左子结点(显然也没有右子结点)。 ③若2k+1≤n,则编号为k的结点的右子结点编号为2k+1;否则该结点无右子结点。

考点8
【考点精讲】

二叉树的遍历

在遍历二叉树的过程中,一般先遍历左子树,再遍历右子树。在先左后右的原则下,根据访问根结点的 次序,二叉树的遍历分为三类:前序遍历、中序遍历和后序遍历。 (1)前序遍历:先访问根结点、然后遍历左子树,最后遍历右子树;并且,在遍历左、右子树时,仍然 先访问根结点,然后遍历左子树,最后遍历右子树。 例如,对图1-1中的二叉树进行前序遍历的结果(或称为该二叉树的前序序列)为:A,B,D,E,C,F。 (2)中序遍历:先遍历左子树、然后访问根结点,最后遍历右子树;并且,在遍历左、右子树时,仍然 先遍历左子树,然后访问根结点,最后遍历右子树。 例如,对图1-1中的二叉树进行中序遍历的结果(或称为该二叉树的中序序列)为:D,B,E,A,C,F。 (3)后序遍历:先遍历左子树、然后遍历右子树,最后访问根结点;并且,在遍历左、右子树时,仍然 先遍历左子树,然后遍历右子树,最后访问根结点。 例如,对图1-1中的二叉树进行后序遍历的结果(或称为该二叉树的后序序列)为:D,E,B,F,C,A。

考点9
【考点精讲】

顺序查找

查找是指在一个给定的数据结构中查找某个指定的元素。从线性表的第一个元素开始,依次将线性表中的元素与被 查找的元素相比较,若相等则表示查找成功;若线性表中所有的元素都与被查找元素进行了比较但都不相等,则表 示查找失败。 例如,在一维数组[21,46,24,99,57,77,86]中,查找数据元素98,首先从第1个元素21开始进行比较,与要 查找的数据不相等,接着与第2个元素46进行比较,以此类推,当进行到与第4个元素比较时,它们相等,所以查找 成功。如果查找数据元素100,则整个线性表扫描完毕,仍未找到与100相等的元素,表示线性表中没有要查找的元 素。 在下列两种情况下也只能采用顺序查找: (1)如果线性表为无序表,则不管是顺序存储结构还是链式存储结构,只能用顺序查找。 (2)即使是有序线性表,如果采用链式存储结构,也只能用顺序查找。

考点10
【考点精讲】

二分法查找

二分法查找,也称拆半查找,是一种高效的查找方法。能使用二分法查找的线性表必须满足两个条件: 顺序存储结构; 线性表是有序表。 在本书中,为了简化问题,而更方便讨论,“有序”是特指元素按非递减排列,即从小到大排列,但允许 相邻元素相等。下一节排序中,有序的含义也是如此。 对于长度为n的有序线性表,利用二分法查找元素X的过程如下。 步骤1:将X与线性表的中间项比较: 步骤2:如果X的值与中间项的值相等,则查找成功,结束查找; 步骤3:如果X小于中间项的值,则在线性表的前半部分以二分法继续查找; 步骤4:如果X大于中间项的值,则在线性表的后半部分以二分法继续查找。 例如,长度为8的线性表关键码序列为:[6,13,27,30,38,46,47,70],被查元素为38,首先将与线性表的中 间项比较,即与第4个数据元素30相比较,38大于中间项30的值,则在线性表[38,46,47,70]继续查找;接着与 中间项比较,即与第2个元素46相比较,38小于46,则在线性表[38]继续查找,最后一次比较相等,查找成功。 顺序查找法每一次比较,只将查找范围减少1,而二分法查找,每比较一次,可将查找范围减少为原来的一半,效 率大大提高。 对于长度为n的有序线性表,在最坏情况下,二分法查找只需比较log2n次,而顺序查找需要比较n次。

考点11 排序
【考点精讲】 1.交换类排序法
(1)冒泡排序法

首先,从表头开始往后扫描线性表,逐次比较相邻两个元素的大小,若前面的元素大于后面的元素,则 将它们互换,不断地将两个相邻元素中的大者往后移动,最后最大者到了线性表的最后。 然后,从后到前扫描剩下的线性表,逐次比较相邻两个元素的大小,若后面的元素小于前面的元素,则 将它们互换,不断地将两个相邻元素中的小者往前移动,最后最小者到了线性表的最前面。 对剩下的线性表重复上述过程,直到剩下的线性表变空为止,此时已经排好序。

在最坏的情况下,冒泡排序需要比较次数为n(n-1)/2。
(2)快速排序法

任取待排序序列中的某个元素作为基准(一般取第一个元素),通过一趟排序,将待排元素分为左右两个 子序列,左子序列元素的排序码均小于或等于基准元素的排序码,右子序列的排序码则大于基准元素的排序 码,然后分别对两个子序列继续进行排序,直至整个序列有序。

2.插入类排序法:
①简单插入排序法,最坏情况需要n(n-1)/2次比较; ②希尔排序法,最坏情况需要O(n1.5)次比较。

3.选择类排序法:
①简单选择排序法,最坏情况需要n(n-1)/2次比较; ②堆排序法,最坏情况需要O(nlog2n)次比较。 相比以上几种(除希尔排序法外),堆排序法的时间复杂度最小。


相关文章:
数据结构与算法知识点必备
数据结构与算法知识点必备_信息与通信_工程科技_专业资料。数据结构与算法知识点必备数据结构与方法 1、 算法的基本特征:可行性、确定性、有穷性、拥有足够的情报 ...
数据结构与算法设计知识点
数据结构与算法设计知识点试题类型:本课程为考试科目 (闭卷笔试) , 试题类型包括: 概念填空题 (10 %) , 是非判断题 (10 %) , 单项选择题(40 %) ,算法...
数据结构与算法
数据结构与算法_计算机软件及应用_IT/计算机_专业资料 暂无评价|0人阅读|0次下载|举报文档数据结构与算法_计算机软件及应用_IT/计算机_专业资料。telnet:172.16.0...
数据结构和算法
数据结构和算法_计算机软件及应用_IT/计算机_专业资料 暂无评价|0人阅读|0次下载|举报文档 数据结构和算法_计算机软件及应用_IT/计算机_专业资料。Java 数据结构...
数据结构与算法实际应用
6 小组成员: 1 计科系《数据结构与算法》应用举例 数据结构与算法在实际中的应用摘要:计算机科学是一门研究用计算机进行信息表示和处理的科学。这里面涉及到两个...
“数据结构与算法大全”
数据结构与算法大全”_计算机软件及应用_IT/计算机_专业资料。何谓数据结构数据结构是在整个计算机科学与技术领域上广泛被使用的术语。它用来反映一个数据 的内部...
数据结构与算法基础知识总结
数据结构与算法基础知识总结_工学_高等教育_教育专区。数据结构与算法基础知识总结 数据结构与算法基础知识总结 1 算法 算法:是指解题方案的准确而完整的描述。 ...
数据结构与算法分析总结
数据结构与算法分析是 两门紧密联系的课程,算法要靠好的数据结构来实现,二者的关系是密不可分的,谈到算法不 得不讲数据结构,谈数据结构也不可避免的要了解算法,...
数据结构与算法的联系与区别
数据结构与算法的联系与区别(1)数据结构与算法的联系: 程序=算法+数据结构。数据结构是算法实现的基础,算法总是要依赖于某种数据结构来实 现的。往往是在发展一...
数据结构和算法部分经典例子
数据结构和算法部分经典例子_IT/计算机_专业资料。只能作为参考!数据结构和算法部分经典例子 一、迭代法 迭代法是用于求方程或方程组近似根的一种常用的算法设计方法...
更多相关标签:
数据结构 | 数据结构与算法 pdf | 数据结构与算法分析 | 大数据平台架构 | 大数据技术架构 | 数据结构培训 | 数据结构与算法 java | 数据结构c语言版 |