当前位置:首页 >> 其它课程 >>

Compass


定向井、水平井计算机辅助设计和测斜分析系统
COMputerized Planning & Analysis Survey System

COMPASS
Landmark Graphics Corporation Drilling & Well Services

定向井、水平井计算机辅助设计和测斜分析系统 ? 基本概念
来源 测量系统
误差

参考椭球体 高斯-克吕格投影

常用坐标系

? 设计 ? 测量 ? 防碰扫描 ? 平台优选 ? 创建/打印用户报告

Origins (来源)
1 1987 Jamiesion Technical Software--- DOS COMPASS 2 1994 DRD of Tulsa --- Wellpath(Directional Package)

3 1995 Munro Garrett---Target(Directional Package)
4 1995 Landmark---COMPASS for Windows
(DOS+Wellpath+Target)

测量基础
1 Geodetic System大地测量系统

Flat Earth-
UTM-通用横向墨卡托图 GPS全球定位系统 CGP- 中国高斯投影 2 Ellipsoid参考椭球体 WGS1984-1984年世界大地测量系统 Krasovsky1940-1940年克拉索夫斯基

1 Local Co-ordinate 2 map Co-coordinate(平面直角坐标 系,相对位置) Easting-横(E)Y坐标 Nothing-纵(N)X坐标 3 Global Co-coordinate(地理坐标
系,绝对位置)

3 Geomagnetic Model
IGRF2000-2000年国际地磁参考场 WMM95-1995年World magnetic Model

Latitude纬度 Longitude经度 4 Lease Line(租借线) North/South-NS向投影 East/West-EW向投影

参考椭球体
Name GRS 1980 WGS 1972
Australian 1965 Krasovsky 1940 Internatl 1924 HAYford 1909

平均 曲率半径 6,378,137 6,3178,135 6,378,160 6,378,245 6,378,388 6,378,388 6,378,249.1 6,378,206.4 6,377,563.4 6,377,397.2 6,377,276.3 6,356,752.3 6,356,750.5 6,356,774.7 6,356,863.0 6,356,911.9 6,356,911.9 6,356,514.9 6,356,583.8 6,356,256.9 6,356,079.0 6,356,075.4

扁率 1/298.257 1/298.26 1/298.25 1/298.25 1/297 1/297 1/293.46 1/294.98 1/299.32 1/299.13 1/300.80

采用国家 最新推荐 NASA Australia USSR 保留 保留 Africa, France USA,Philippines Britain
Europe,Chile,Indonesia
India,Burma, Pakistan,Afghan,Thailand;etc.

Clarkel 1880 Clarkel 1866 Airy 1849 Bessel 1841 Everset 1830

高斯-克吕格投影
1 高斯投影分带 中央子午线以经度6°将全球分为60个带(6°投影)。我国采用由 英国格林威治零子午线向东起算。我国境内最西部属第13投影带 ,最东部为第23投影带,全国共11个 6°带。 2 高斯平面直角坐标系

高斯投影中,投影带的中央子午线作为纵坐标轴(X轴),赤道所形 成的直线作为横座标轴(Y轴)。投影后互相垂直,其交点即为坐 标原点,构成了统一的平面直角坐标系。
3 坐标换算 地质部门设计的坐标属于高斯平面直角坐标。 GPS(WGS-84)与BJZ-54坐标的换算需通过WGS-72坐标系统 作为过渡。

13

23

常用坐标系
1 三个北极 地理北极、地磁北极、网格北极 2 三个参数 子午线收敛角:高斯-克吕格平面直角坐标纵线与地理坐标纵线 之间的差角;

磁偏角:地理坐标纵线与地磁坐标纵线之间的夹角,当磁北方位 线在正北方位线以东时,称为东磁偏角;在正北方位线以西称为 西磁偏角
地质设计的坐标(高斯-克吕格坐标):井口、靶点和井底坐标 3 磁偏角校正:真方位角=磁方位角+东磁偏角 真方位角=磁方位角-西磁偏角

Compass - Sign of Magnetic Declination

Magnetic North

True North

True North

Magnetic North

- Magnetic
Declination

+ Magnetic
Declination
E

Grid, True and Magnetic North
Grid North

True North Magnetic Declination Grid Convergence

Magnetic North

Remember method: Make True as basement Lie in East is “ +” Draw this before using

Northern Hemisphere

E

误差模型(系统)
误差模型(系统) —如何计算井眼轨迹的不确定性
The Error Model defines How wellpath positional uncertainty is calculated.

? 锥形误差 Cone of Error

? 系统椭圆误差 Systematic Ellipse
? 矢量误差 ISCWSA (井眼测量精度工业导向委员会)
(The Industry Steering Committee for Wellbore Survey Accuracy)

锥形误差 Cone of Error
?球体误差随深度变化(误差表面是个锥体) ?现场和试验数据

?前一个球体半径 + 井深变化量 X 工具误差系数 / 1000.
?工具误差系数 (常数或者随井斜的变化而变化) ?起始误差=井口半径+井眼误差
The starting error around the wellbore is the well error plus the top borehole radius (if defined).

系统椭圆误差 Systematic Ellipse
? 工业标准 ? 系统的内因和外因引起 ? 发生在同一个矢量方向上 ? 不考虑随机误差 ? 测斜阅读误差较小或者可以取消
There are error sources that are random, but they are assumed to be small and tend to cancel out over a number of survey readings.

? 某些系数和加权数不适合现代定向测斜仪器

? 六种误差系数 ____________________________________________
SPE 9223, C.J.M. Wolff & J.P. de Wardt, JPT Dec. 1981

六种误差系数 Six Coefficients
?不居中度 Misalignment error
工具在井眼/套管中心的误差(井斜和方位)

?相对深度误差 Relative Depth Error
钻具长度的丈量、拉伸和测斜电缆长度误差

?井斜误差 True Inclination Error
测斜仪重力的影响以及仪器的井斜灵敏度

?罗盘误差 Compass Reference Error
磁性工具的干扰和准性的误差

?陀螺参考方位误差 Gyroscope Azimuth Error
支架倾斜(Gimbal Drift)造成的陀螺方位偏差

?磁性方位误差 Magnetic Azimuth Error
钻具的磁性影响

?井斜、方位误差表格 ?仪器厂家提供

Inclination Azimuth Error Grid:

?更精密的仪器 (速率陀螺)

矢量误差 ISCWSA
? 固态磁性仪器 MWD &

EMS Solid State Magnetic
Instruments

? 描述动态误差项 Dynamic
Number of Error Terms

? 误差项名称、矢量方向、与 误差源的连接方式、误差项 单位、误差计算公式 _________________________________________________ SPE 56702, H.Williamson “ Accuracy Prediction for Directional MWD

COMPASS for Windows
Version 98.7(32 bit)
运行环境:Windows 95, Windows 98 or Windows NT 推荐CPU:奔腾II 200Mhz 安装要求硬盘:30M

系统内存要求:64M
SVGA:800×600

井眼轨迹设计
? 常规定向井 ? 水平井 ? 两维井/三维井 ? 待钻井眼 ? 井眼轨迹优化

定向井轨迹设计
1 剖面类型
三段制(“ J” )剖面和五段制(“ S” )等 二维定向井、三维定向井

2 设计原则
根据油田勘探、开发部署的要求,保证安全钻井

要有利于提高油气产量和采收率 应有利于钻井、采油和修井作业 应尽可能选择比较简单的剖面类型

水平井轨迹设计
1 水平井剖面类型
小、中、大曲率半径水平井

2 水平井剖面形状
双增剖面、变曲率剖面、圆弧单增剖面等

3 设计依据
钻井目的及采用的钻井方式 工艺装备 条件及技术水平 目的层的厚度、产状 设计井的基本设计数据

水平井分类
分类 分类 长半径 中半径 过渡 短半径 造斜率(°/100ft) 2to8 8to30 30to60 60to200 半径(ft) 2865to716 716to191 191to95 95to28

Dogleg / Toolface Curves

To MD

To TVD

To Inclination

To Direction

Tangent to Point

TVD, Lat & Dep
(Calc. Dogleg & Toolface)

On Line by TVD
(Calc. Dogleg & Toolface)

Align by Inclination

Build / Turn Curves

To MD

To TVD

To Inclination

To Azimuth

Tangent to a to Point

Point
(Calc. Build & Turn)

On Line by TVD
(Calc. Build & Turn)

Align by Inclination

Optimise trajectory design
? KOP ? Dogleg ? Torque/Drag

井眼轨迹测量计算
LANDMARK

井眼轨迹控制概念
井眼轨迹控制:采用合理的措施(包括BHA、
操作参数及测控系统等), 强制钻头沿预制轨道 破碎地层而钻进的过程。

控制井眼轨迹:
-需要研制专门的井下工具和测斜系统(硬件)
-必须开发井眼轨迹预测和控制软件(软件)

计算参数
基本参数:井深、井斜、方位 计算参数:垂深、N和E坐标、水平投影长度、
垂直分量、井眼曲率(狗腿严重度)、闭合方 位、闭合距 ……

井眼轨迹的测量与计算
测斜方法
1 单点测斜:一次下井只能测一个井深的参数

2 多点测斜仪:一次下井可记录井眼轨迹上多个井
深处的井眼轨迹参数 3 随钻测斜仪:随同钻柱一同下入井内,在钻进过 程中连续测量,并实时将测量数据传至地面

测量误差的形成
1 由于井眼轨迹的理想假设,导致了与真实井眼
轨迹的偏差

2 测量数据在每次测量过程中存在着不同程度的
误差,导致由此计算出来的井眼轨迹与实际轨 迹不符

3 由于测点间存在间距(一般30m),造成井眼轨
迹误差

测量数据的处理
1 不确定椭圆随着井深的增加而加大 2 要用陀螺测量资料校正“ 不确定椭园区”

3 Compass提供三种误差分析方法:
- Cone of Error

- Systematic Ellipse
- ISCWSA

Compass Error Ellipse Report
3 Dimensional View
North H.Minor

Plan View
Min.Azi Lateral X Borehole East

Depth Lateral

Vertical Section View in Borehole Azimuth
Depth X Borehole
Vertical

TVD

X Borehole Plane = Perpendicular to wellpath vector at depth of interest

High Side

High Side

TVD

V.Section

测量仪器误差值
误差分类 :1,系统误差
2,随机误差 3,过失误差
深度误差 (1/1000) Goog Gyro Poor Gyro 0.5 2.0 线性误差 (Degree) 0.03 0.2 角度误差 (Degree) 0.2 0.5 基准误差 (Degree) 0.1 1.0 钻具磁性误 差 (Degree) 陀螺误差 (Degree) 0.5 2.5

Good Mag.
Poor Mag. Weighting

1.0
2.0 1

0.1
0.3 1

0.5
1.0 Sin I

1.5
1.5 Sin I

0.25
5.0+5.0 Sin I Sin A

(Cos I)^-1

井眼轨迹计算方法
中国钻井行业:手工计算时采用平均角
法,计算机计算时采用最小曲率

Compass:最小曲率法、曲率半径法、平
均角法、平衡正切法

定向井、水平井设计图例

丛式井
? 防碰扫描技术

目的
在丛式井设计和施工中,不仅要求中靶, 而且要求防止两井交叉相碰 进行邻井距离扫描有助于两井任一井深时 的相对位置,以便采取相应的措施

邻井距离扫描方法
? 3D最近距离扫描法 ? 法面法(Traveling Cylinder) ? 平面法(Horizontal Plan) ? 高边+方位角法(Highside+Azimuth)

常用扫描方法介绍
最近距离扫描:可以确定参考井井眼轴线上
任一点到比较井井眼轴线的最近距离和最近距 离扫描图

法面距离扫描:可以确定参考点切线的法面
与扫描点的交点,同时求出两点间的距离及相 对方位,进而在极坐标平面上画出法面距离扫 描图

扫描方法的选用
1 指导定向井施工或确定剖面符合率时, 优先使用法面距离扫描

2 遇到丛式井防碰问题时,宜使用最近距 离扫描图
3 在要求很高的定向井(如救援井)施工中, 应同时使用法面距离扫描图和最近距离 扫描图

平台优选技术

井口排列方式 平台位置

丛式井设计
优化丛式井设计,可以提高油田开发的综 合效益和加快投资回收速度。 1 优化地面井口的排列方式

2 优选平台位置

优选地面井口排列方式
根据每一个平台上井数的多少选择平台内 地面井口的排列方式

1 矩形排列:适合于一个丛式井打多口井
2 环状排列:适用于在陆地或浅海人工岛 钻丛式井,在一个丛式井平台上钻几十 口井

优选平台位置
根据每个平台上各井井底位置(目标点)和 地面条件等因素优选,优选平台位置。 优选平台位置可按照平台位置的优选原则 进行优选

用户报告
? 打印机 ? 绘图仪

图形

表格

技术支持
010-84864501

bjsupport@lgc.com

www.lgc.com.cn

010-84864819

? ……

课程安排
? ? ? ? ? ? ? ? ? Using On-line Help Data Structure Site Optimiser Template Editor Planning Survey Anti-collision Anti-collision Wall Plots Getting help from COMPASS Hierarchical data structure Best site location to drill targets Calculate template co-ordinates Design shape of wellpath Compute shape of wellpath Separation between wellpaths Combined exercise Editing profile and plan plots

数据结构
Data Structure

COMPASS has a hierarchical data structure .....

?Company (公司) ?Field (油田) ?Site (井场) ?Well (井) ?Wellpath (井眼轨迹) ?Plan and Survey (设计和测斜)
... starting at the lowest level...

Survey
Survey Observation
Measured Depth Inclination Direction OR for Inclination Only MD, Inclination OR for Inertial TVD, N/S, E/W

? A Survey is a series of observations made in a section of wellbore with the same survey tool on the same tool run.

Survey
Survey Observation
Measured Depth Inclination Direction OR for Inclination Only MD, Inclination OR for Inertial TVD, N/S, E/W

? A Survey is a series of observations made in a section of wellbore with the same survey tool on the same tool run. ? The Survey Tool can be Traditional (MD, Inc, Azi), Inclination Only (MD, Inc), or Inertial (TVD, N/S, E/W).

Survey
Survey Observation
Measured Depth Inclination Direction OR for Inclination Only MD, Inclination OR for Inertial TVD, N/S, E/W

? A Survey is a series of observations made in a section of wellbore with the same survey tool on the same tool run. ? The Survey Tool can be Traditional (MD, Inc, Azi), Inclination Only (MD, Inc), or Inertial (TVD, N/S, E/W). ? Each Survey Tool is assigned an Error Model for calculating Positional Uncertainty.

?Company ?Field ?Site ?Well ?Wellpath ?Plan and Survey

Wellpath

Plans

? A Wellpath may have many Plans ...

Wellpath

Plans

? A Wellpath may have many Plans ... ? ...but only one Principal Plan

Wellpath

Surveys

Plans

? A Wellpath may have many Plans ... ? ...but only one Principal Plan ? A Wellpath may also have many Surveys

Wellpath

Surveys

Plans

Definitive Wellpath

? ? ? ?

A Wellpath may have many Surveys A Wellpath may have many Plans ... ...but only one Principal Plan A Wellpath will have a Definitive Wellpath

Wellpath

Surveys

Plans

Definitive Wellpath

? ? ? ? ?

A Wellpath may have many Surveys A Wellpath may have many Plans ... ...but only one Principal Plan A Wellpath may have a Definitive Wellpath At the Planning Stage, The Definitive Wellpath may the Principal Plan ...

Wellpath

Surveys

Plans

Definitive Wellpath

? ? ? ? ? ?

A Wellpath may have many Surveys A Wellpath may have many Plans ... ...but only one Principal Plan A Wellpath may have a Definitive Wellpath At the Planning Stage, The Definitive Wellpath may be the Principal Plan … …but while Drilling, it would be a combination of the most accurate Surveys

Wellpath
IGRF

Geomagnetic Field

? A Wellpath will also have its own local Magnetic Field calculated using the Geomagnetic Model defined at the Field Level

Wellpath
IGRF

Survey Date: 20/04/2000 Loc: 51? 5’ 45” N 3 ? 15’ 33” E

Geomagnetic Field

? A Wellpath will also have its own local Magnetic Field calculated using the Geomagnetic Model defined at the Field Level ? This local Field is calculated using an appropriate Date of Operations when surveys were being recorded and the Wellpath Location

?Company ?Field ?Site ?Well ?Wellpath ?Plan and Survey

Well
0.0 N/S

0.0 E/W

? A Well is a surface location referenced from the Site local co-ordinate system

Well
0.0 N/S

0.0 E/W

? A Well is a surface location referenced from the Site local coordinate system ? It may have one or more Wellpaths referenced to it

Well
0.0 N/S

0.0 E/W

Well Reference Point

? A Well is a surface location referenced from the Site local coordinate system ? It may have one or more Wellpaths referenced to it ? If required, a Well can have a Well Reference Point which defines a permanent point upon which vertical depths can be displayed, stored and referenced.

?Company ?Field ?Site ?Well ?Wellpath ?Plan and Survey

Site
0.0 N/S

0.0 E/W

? A Site is a collection of Wells.

Site
0.0 N/S

0.0 E/W

? A Site is a collection of Wells. ? The site centre may given map or geodetic coordinates...

Site
0.0 N/S

0.0 E/W

? A Site is a collection of Wells. ? The site centre may given map or geodetic coordinates... ? and an elevation above a system or Field Datum.

Site
0.0 N/S

N

0.0 E/W

Drilling Targets

? ? ? ?

A Site is a collection of Wells. The site centre may given map or geodetic co-ordinates... and an elevation above a system or Field Datum. The Site coordinate system can be aligned to either True North or Grid North

Site
0.0 N/S

N

0.0 E/W

Drilling Targets

? A Site is a collection of Wells referenced by the same Local Coordinate System. ? The site centre may given Map or Geographic co-ordinates... ? and a elevation above a System or Field Datum. ? The Site coordinate system can be aligned to either True North or Grid North ? Sites can have drilling targets...

Site
0.0 N/S

N

0.0 E/W

Drilling Targets

? ? ? ? ? ?

A Site is a collection of Wells referenced by the same Local Coordinate System. The site centre may given Map or Geographic co-ordinates... and a elevation above a System or Field Datum. The Site coordinate system can be aligned to either True North or Grid North Sites can have Targets… which can be selected by a Wellpath

Site
0.0 N/S

N

0.0 E/W

Drilling Targets

? ? ? ? ? ? ?

A Site is a collection of Wells referenced by the same Local Coordinate System. The site centre may given Map or Geographic co-ordinates... and a elevation above a System or Field Datum. The Site coordinate system can be aligned to either True North or Grid North Sites can have Targets… which can be selected by a single Wellpath or selected by multiple Wellpaths

?Company ?Field ?Site ?Well ?Wellpath ?Plan and Survey

Field

? A Field is a collection of Sites...

Field

Geodetic System

? A Field is a collection of Sites... ? within the same Geodetic System.

Field
G

T

Geodetic System
G

? A Field is a collection of Sites... ? within the same Geodetic System. ? Sites within a Field can be independently aligned to Grid North or True North

Field
System Datum e.g. MSL

T

Geodetic System
G G

? A Field is a collection of Sites... ? within the same Geodetic System. ? All Sites within a Field are independently aligned to Grid North or True North ? A Field has a System Datum the name given to 0 TVD for the Field e.g. Mean Sea Level.

Field
System Datum e.g. MSL

Geodetic System

? A Field is a collection of Sites... ? within the same Geodetic System. ? All Sites within a Field are independently aligned to either Grid North or True North ? A Field has a System Datum, the name given to 0 TVD for the Field ? Data within the Field can be referenced to the System Datum

Field
System Datum e.g. MSL Wellpath Datum e.g. RKB

Geodetic System

? A Field is a collection of Sites... ? within the same Geodetic System. ? All Sites within a Field are independently aligned to either Grid North or True North ? A Field has a System Datum, the name given to 0 TVD for the Field ? Data within the Field can be referenced to the System Datum, Wellpath Datum

Field
System Datum e.g. MSL Wellpath Datum e.g. RKB

Geodetic System

Well Reference Point e.g. ML

? A Field is a collection of Sites... ? within the same Geodetic System. ? All Sites within a Field are independently aligned to either Grid North or True North ? A Field has a System Datum, the name given to 0 TVD for the Field ? Data within the Field can be referenced to the System Datum, Wellpath Datum or the Well Reference Point

Field
System Datum e.g. MSL Wellpath Datum e.g. RKB

Geodetic System

Geomagnetic Model

Well Reference Point e.g. ML

? ? ? ? ?

A Field is a collection of Sites... within the same Geodetic System. All Sites within a Field are aligned to either Grid North or True North A Field has a System Datum the name given to 0 TVD for the Field Data within the field can be referenced to the System Datum, Wellpath Datum or the Well Reference Point ? You can select a Geomagnetic Model to compute magnetic declination at any location and time within the Field.

?Company ?Field ?Site ?Well ?Wellpath ?Plan and Survey

Company

? A Company may have several Fields ? Companies may have different policies on ...

Company

Anti-collision Preferences

? A Company may have one or more Fields ? Companies may have different policies on ... ? ...Anti-collision calculations ...

Company

Anti-collision Preferences

Survey Calculation Method dMD cos(I)

? ? ? ?

A Company may have one or more Fields Companies may have different policies on ... ...Anti-collision calculations ... ...Survey Calculation methods

Company

Anti-collision Preferences

Survey Calculation Method dMD cos(I) Survey Tool Errors
Errors intrinsic in wellbore surveying

? ? ? ? ?

A Company may have one or more Fields Companies may have different policies on ... ...Anti-collision calculations ... ...Survey Calculation methods and ...Survey Tool Error Parameters.

Survey History - The Definitive Path Story
1st Hole Section Open Hole MWD1 Definitve Path 1st Hole Section Cased Gyro 1 Definitve Path
2nd Hole Section Open hole MWD2 2nd Hole Section Cased - Final Survey Gyro 2 Gyro FS

Definitve Path

MWD is the only data we have so it becomes the Definitive Path

MWD replaced by a gyro survey. The gyro survey becomes the Definitive Path

MWD in next open hole section tied-on to gyro to form Definitive Path

Gyro run from surface replaces all previous surveys to form the Definitive Path

大地坐标 Company,Field & Site setup
V.S.Origin Coordinate Origin UTM North References

Latitude

Local Cr

Slo t Departure

Lat /Dep Origin

Slot

Local Cr

Vert Sectn Origin

靶点定义
Target Descriptions

Geometrical Targets Point Circle Ellipse Rectangle

?

Geometrical Targets may be defined as a point, circle, ellipse, or rectangle.

Geometrical Targets Point Circle Ellipse Rectangle

? ?

Geometrical Targets may be defined as a point, circle, ellipse or rectangle. You can offset the “aiming point” from the geometric centre.

Geometrical Targets Point Circle Ellipse Rectangle

? ? ?

Geometrical Targets may be defined as a point, circle, ellipse or rectangle. You can offset the “aiming point” from the geometric centre. Using thickness up and down, the “aiming point can be offset vertically.

Geometrical Targets Point Circle Ellipse Rectangle

? ? ? ?

Geometrical Targets may be defined as a point, circle, ellipse or rectangle. You can offset the “aiming point” from the geometric centre. With thickness up and down the “aiming point can be offset vertically. Targets can be rotated ...

Geometrical Targets Point Circle Ellipse Rectangle

? ? ? ? ?

Geometrical Targets may be defined as a point, circle, ellipse or rectangle. You can offset the “aiming point” from the geometric centre. With thickness up and down the “aiming point can be offset vertically. Targets can be rotated ... ... and inclined from horizontal with rotation about the “aiming point”.

Compass Target Shapes
Fwd Back Left Right Left Right Fwd Back Left Right

Fwd
Back

Up

Up

Up

Down

Down

Down

Circle

Rectangle

Ellipse

Polygonal Targets

?

Polygonal Targets may be defined with any number of points

Polygonal Targets

? ?

Polygonal Targets may be defined with any number of points They may also be assigned a thickness above and below a centre

Polygonal Targets

? ? ? ?

Polygonal Targets may be defined with any number of points They may also be assigned a thickness above and below a centre Polygons can be rotated ... ... and inclined from horizontal with rotation about the “aiming point”.

Polygonal Targets

?

Unlike Geometrical Targets which have a constant thickness...

Polygonal Targets

? ?

Unlike Geometrical Targets which have a constant thickness… Polygonal targets have variable thickness, definable for each point, enabling wedge shaped targets to be defined

Polygonal Targets
N
(180,158) (115,151) (285,168 ) (210,128 )

(329,102 ) (260,72)

(149,78 )

W
(0,0)

E

S

?

Polygonal Target Points may be defined using local Northings & Eastings...

Polygonal Targets
N
(500325,118268 )

(500260,118261 )
(500355,118238 )

(500430,118278 )

(500474,118212 )

(500294,118188)

(500405,118182 )

W
(500145,118110)

E

S

? ?

Polygonal Target Points may be defined using local Northings & Eastings ... Or defined using Geodetic Co-ordinates.

Geological and Driller’s Targets
Geological Target

1. Surveys show that well has penetrated the target at . Uncertainty in this position is usually represented by an error ellipse (this one is drawn at 2sd).
2. Points are 100 possible repeat survey locations of the actual point of penetration. The 8 points lying outside the geological target represent the 8% probability that the target has been missed. We say the “inclusion probability” at the point is 92%.

Geological and Driller’s Targets
3. We can colour-code the inclusion probability at every point inside the geological target boundary as follows: > 95% 90% - 95% < 90% etc. The result is a “contour map”

Well Direction

Geological and Driller’s Targets
3. We can colour-code the inclusion probability at every point inside the geological target boundary as follows: > 95% 90% - 95% < 90% etc.
Drillers Target

The result is a “contour map” 4. Approximating one of the probability contours with straight lines defines the extent of a Driller’s target

Well Direction

测斜处理
Survey

Varying Curvature Scan

Varying Curvature is a survey calculation method which as a by product produces a value called Inconsistency.

Varying Curvature Scan

MD Interval

The Inconsistency can be considered to be the effect on the bottom hole location of each individual survey station.
If the survey station is missing ...

Varying Curvature Scan

MD Interval

Inconsistency of a single observation
Shift to bottom hole location

Shift
MD Interval

X 100

... the Inconsistency is the amount by which the bottom hole location would move in space.

Definitive Path While Drilling a Well
Survey List TOTCO 26” 26” TOTCO

Definitive Path:
TOTCO 26”

Definitive Path While Drilling a Well
26” TOTCO 26” TOTCO Survey List TOTCO 26” MSS 17-1/2”

17-1/2”

MSS

Definitive Path:
TOTCO 26” TOTCO 26” MSS 17-1/2”

Definitive Path While Drilling a Well
26” TOTCO 13-3/8” GYRO Survey List TOTCO 26” MSS 17-1/2” GYRO 13-3/8”

Definitive Path:
TOTCO 26” GYRO 13-3/8”

Definitive Path While Drilling a Well
26” TOTCO 13-3/8” GYRO 13-3/8” GYRO Survey List TOTCO 26” MSS 17-1/2” GYRO 13-3/8” MWD 12-1/4”

12-1/4”

MWD

Definitive Path:
TOTCO 26” GYRO 13-3/8” GYRO 13-3/8” MWD 12-1/4”

Definitive Path While Drilling a Well
26” TOTCO 13-3/8” GYRO Survey List TOTCO 26” MSS 17-1/2” GYRO 13-3/8” MWD 12-1/4” GYRO 9-5/8”

9-5/8”

GYRO

Definitive Path:
TOTCO 26” GYRO 13-3/8” GYRO 9-5/8”

Definitive Path While Drilling a Well
26” TOTCO 13-3/8” GYRO

Survey List TOTCO 26” MSS 17-1/2” GYRO 13-3/8” MWD 12-1/4” GYRO 9-5/8” MWD 8-1/2”

9-5/8”

GYRO

9-5/8”

GYRO

8-1/2”

MWD

Definitive Path:
TOTCO 26” MMS 13-3/8” GYRO 9-5/8” GYRO 9-5/8” MWD 8-1/2”

Definitive Path While Drilling a Well
26” TOTCO 13-3/8” GYRO

Survey List TOTCO 26” MSS 17-1/2” GYRO 13-3/8” MWD 12-1/4” GYRO 9-5/8” MWD 8-1/2” EMS 7”

9-5/8”

GYRO

7”

EMS

Definitive Path:
TOTCO 26” MMS 13-3/8” GYRO 9-5/8” EMS 7”

设计
Plan

2D Well Design Slant Well
4 parameters 2 to define 2 to compute

L1 Measured Depth of Kick Off B1 Build Rate at Start I1 Maximum Angle Help L2 Length of Hold Section

2D Well Design S Well
An S Well may have a Build-Hold-Drop profile...

2D Well Design S Well
L1

Kick-off
B1 L2 I1
L1 Measured Depth of Kick Off B1 Build Rate at Start I1 Maximum Angle Help L2 Length of Hold Section B2 2nd Drop Rate I2 Final Inclination L3 Length of Final Hold

7 parameters 5 to define 2 to compute

B2
L3

I2

Dogleg / Toolface Curves

To MD
(Calc. Location)

To TVD
(Calc. Location)

To Inclination
(Calc. Location)

To Direction
(Calc. Location)

Curve

Hold

Tangent to Point (Calc.
Toolface)

Plan to a Point

On Line by TVD

Align by Inclination
(Calc. Dogleg & Toolface)

(Calc. Dogleg & Toolface) (Calc. Dogleg & Toolface)

Build / Turn Curves

To MD

To TVD

To Inclination

To Azimuth

Tangent to a Point

Point
(Calc. Build & Turn)

On Line by TVD
(Calc. Build & Turn)

Align by Inclination

Optimum Align

This Plan Method constructs three sections...

Curve

Optimum Align

This Plan Method constructs three sections...

Curve , Hold

Optimum Align

This Plan Method constructs three sections...

Curve , Hold, Curve

Optimum Align
(Curve \ Hold \ Curve)

By the end of this method the wellpath will have hit the target and be on a specified inclination and azimuth.

Az i

Inc

Optimum Align
(Curve \ Hold \ Curve)

By the end of this method the wellpath will have hit the target and be on a specified inclination and azimuth.
These could be user entered values...

Optimum Align
(Curve \ Hold \ Curve)

By the end of this method the wellpath will have hit the target and be on a specified inclination and azimuth.
These could be user entered values... Or calculated using 2nd target location

Optimum Align
(Curve \ Hold \ Curve)

Get there by...

Optimum Align
(Curve \ Hold \ Curve)

... Entering (calculating) two dogleg rates
R

or...

R

Optimum Align
(Curve \ Hold \ Curve)

... entering the length of tangent section
or...

Optimum Align
(Curve \ Hold \ Curve)

... entering the TVD of the start and end of the tangent section.

Warning: If you develop a plan to 30° inclination then specify a build to 10°, Compass will provide a mathematical solution...

...but it may not be what you expected.

Thread Targets
Use this method to thread a series of targets. Targets can be sorted by... Displacement OR

Inc TVD
OR

Desc TVD OR

Name
Glory - A1

Glory - A2 Target List Glory - B1
Glory - A1 Glory - A2 Glory - B1 Glory - B2 Glory - C1 Glory - C2

Glory - B2

Glory - C2

Glory - C1

Thread Targets
Targets can be threaded using either ... Curve Only OR

Curve-Hold
OR

Optimum-Align OR

Straight Line

Least Turn

防碰扫描
Anti-collision

Anti-Collision - Concepts
Error System
Wellbore position uncertainty

Scan Method
Distance between wellpaths

Error Surface
Calculating dimension of error surfaces between wellpaths

Warning Method
Criteria for reporting separation

Anti-Collision - Concepts
Error System
Wellbore position uncertainty
? Cone of Error ? Inclination Cone of Error ? Systematic Ellipse (SPE 9223) – also known as Wolff & de Wardt

? ISCWSA (SPE 56702)
– Industry Steering Committee for WellBore Survey Accuracy

Error System - Cone of Error
Tool code errors may increase with inclination For example Inclination Expansion 0° to 14.99° 7ft/1000ft 15° to 24.99° 9ft/1000ft 25° to 34.99° 12ft/1000ft 35° to 49.99° 14ft/1000ft 50° to 79.99° 15ft/1000ft 80° to 89.99° 21ft/1000ft

80° to 89.99° 26ft/1000ft

Error System - Systematic Ellipse
Combines the following Survey Tool errors: Relative Depth Error Error in measuring along hole depth e.g. stretch in a wireline, drillstring measurement Misalignment Error Error due to instrument misalignment in the wellbore due to poor centralisation, non-axial wireline pull True Inclination Error Error in inclination reading in vertical plane Compass Reference Error A constant error in direction due misalignment e.g. gyro foresight error or error in magnetic declination Drillstring Magnetization Magnetic interference cause by “hot spots” and BHA component configurations Gyrocompass Error due to gyro gimbal drift caused by running procedures, Earth’s rotation, time, temperature, inclination, and gyro moment of inertia, and gimbal construction

Error System - ISCWSA
Dynamic Number of Error Sources (Terms), each defined by: ? Name e.g. Accelerometer Bias ? Vector direction for error source
?Azimuth, Depth, Inclination, Lateral, Misalignment, Inertial, Bias

? Value error value for the source of error ? Tie-On determines how an error source is tied onto sources: Random, Systematic, Well, Global ? Formula weighting for each error term e.g. ASX ? Range inclination range for error term

? ? 0 1 ? ? ? cos I sin ? ? ? G ??cos I sin A sin ? ? cos A cos? ? tan ? ? cot I cos? ? m m ? ?

? L ?1? Kl ? ? K ?1 svy ? ? m i ,l , k ? ? ? m i , L , k ? m i , L , K ? MK ? ?? ? ? ?? ? ? k ?1 ? i ? l ?1 ? k ?1
L ?1 l ?1 K ?1 k ?1

rand Ci ? ,K

rand ? Ci ,l

?

? ? ei , L , k ? . ? ei , L , k ?

T

?

? ei , L , K ? .? ei , L , K ? T
T

Bias

syst Ci ,K ?

L ?1

? K ?1 ? ? K ?1 ? syst ? ? ? ei , L , k ? ei , L , K ? . ? ? ei , L , k ? ei , L , K ? ? Ci ,l ? ? ? ? ? k ?1 ? ? k ?1 ? l ?1

Anti-Collision - Concepts

Scan Method
Distance between wellpaths ? Horizontal ? 3-Dimensional closest approach ? Travelling Cylinder

Scan Method
Offset Well
Reference Well
3 Dimensional Horizontal Travelling Cylinder

Scan Method
Check Well
Advantages- Always show the minimum distance to an offset wellpath.

Generic Well
3 Dimensional

Disadvantages- Gives a distorted impression of separation on a travelling cylinder plot.

Scan Method
Check Well
Advantages- True to the concept of a traveling cylinder plot.

Generic Well
Travelling Cylinder

Disadvantages- Difficult to understand, scans from offset well back to reference well

Scan Method
Check Well
Advantages- Simple to understand.

Generic Well
Horizontal

Disadvantages- Should not be used to scan non-vertical wells. May miss a collision between horizontal & vertical wellpaths. Cannot be used to scan horizontal wells.

Anti-Collision - Concepts

Warning Method
Criteria for reporting separation ? Ratio factor ? Depth Based ? Rules Based

Separation Factor
R1 R2

Center to Center

Center to Center Separation Factor = ----------------------R1 + R2

Warning Criteria- Ratio Factor
Sep Factor > 1

Sep Factor = 1

Sep Factor < 1

Error Surfaces
The Error Surface determines the shape of the errors when relating one wellpath to another in the anti-collision separation factor calculation.
Separation = Factor

Centre to Centre Separation R1 + R2

Error Surface models are usually specified by Company policy for survey accuracy and collision avoidance assessments. Compass has 3 available error surface models: ? Elliptical Conic Optimistic ? Circular Conic Conservative ? Rectangular Conic More Conservative

Error Surfaces
Elliptical Conic
Radius Projected onto Error Ellipse as Intersected by

Centre to Centre Plane
Offset Well Error Ellipse
Minor

Reference Well Error Ellipse
Major

Minor

R1

R2

Separation = Factor

Centre to Centre Separation
R1 + R2

Error Surfaces
Circular Conic
Radius Projected onto Major Error Ellipse Dimension

Spheroidal Projection based on Major Dimension of Error Ellipse

R1
Major

R2

Separation = Factor

Centre to Centre Separation
R1 + R2

Including Casing Radii in the Separation Factor calculation results in the Centre to Centre distance being reduced by the sum of the Casing radii assuming that Casing is centred in the Wellbore
Centre to Centre Distance

Error Surfaces Casing Radii

12-1/4” OH

Without Casing Radii

8-1/2” OH

9-5/8” Casing Separation = Factor

With Casing Radii Centre to Centre Separation R1 + R2

7” Liner

Travelling Cylinder Plot - Near Vertical Wells Elevation Plan

Travelling Cylinder
Distance 15 10 5 5 10 15 Angle From High Side 10° 20° 40° 220° 200 190°

High-Side Angle + Current Well Azimuth
Distance 15 10 5 5 10 15 Angle From High Side + 10° + 20° + 40° + 220° 200 190+ ° + Current Well Azimuth = 135° = 135° = 135° = 315° = 315° = 315° 145° 155° 175° 175° 155° 145°

Compass Error Ellipse Report
3 Dimensional View
North

Semi-Minor Unc

Plan View
Semi-Min.Azi
Lateral Bias Lateral Unc.

X Borehole

Semi-Major Unc.

East

Vertical Section View in Borehole Azimuth
Lateral Unc. Bias High Side Unc. High Side Unc.

X Borehole
Vertical Unc. Vertical Bias

TVD

X Borehole Plane = Perpendicular to wellpath vector at depth of interest

High Side Bias

TVD

V.Section

附件
Spare Slides

UK National Grid System
Scale Factor on the Central Meridian = 0.9996012717

Latitude of Origin = 49° False Northings = -100000 m

Central Meridian = 2°W False Eastings = 400000 m

WGS84 AGD84

Jim’s office has different latitude on WGS84 that it would have on AGD84

Geoid (The earth’s surface)

Jim’s office

The geoid is the physical shape of the earth - well not quite but almost. A geodetic datum is a mathematical model for the shape of the earth. WGS84 and AGD84 are both geodetic datum. A geodetic datum comprises ?the shape of the earth (dimensions of the ellipsoid) ?the point at which the ellipsoid is tied to the geoid. So ..ADG84 is ?an ellipsoid of dimensions a=6378160 m e^2=0.006694541855 ?it is “tied” to the geoid at Johnston Geodetic Station 25 ° 56’ 54.551 “ S 133° 12’ 30.0771” E

and ..WGS84 is ?an ellipsoid of dimensions a=6378137 e^2= 0.00669438 ?it is “tied” to the geoid at the geoid’s centre of mass a geocentric datum. (Geocentric datum are used for satellite tracking because satelittes fly around the earth’s centre of mass not some point like Johnston Geodetic Station that some Aussie surveyor pick out at hat.)
Let’s pick a point on the surface of the earth, say Jim’s office. So what is the lat / long of Jim’s office ? Well it depends on which datum we are working on. Jim’s office won’t have the same lat / long in WGS84 as it does on AGD84. If we know the lat / long on AGD84 and we want to find out the corresponding lat / long on WGS84 we must ?convert the lat / long on the Australain National Spheroid to XYZ coordinates. ?move the origin of the XYZ system ?apply the appropriate rotations around the X, Y and Z axis. ?convert from XYZ to lat / long on the WGS84 ellipsoid. We don’t do this in COMPASS as we considered it a beyond the experince of drilling engineers and best left to Topographic Departments. Dave McD

The geoids is the physical shape of the earth - well not quite but almost. A geodetic datum is a mathematical model for the shape of the earth. WGS84 and AGD84 are both geodetic datum. A geodetic datum comprises ?the shape of the earth (dimensions of the ellipsoid) ?the point at which the ellipsoid is tied to the geoids. So ..ADG84 is ?an ellipsoid of dimensions a=6378160 m e^2=0.006694541855 ?it is “tied” to the geoid at Johnston Geodetic Station 25 ° 56’ 54.551 “ S 133° 12’ 30.0771” E

and ..WGS84 is ?an ellipsoid of dimensions a=6378137 e^2= 0.00669438 ?it is “tied” to the geoid at the geoid’s centre of mass a geocentric datum. (Geocentric datum are used for satellite tracking because satellites fly around the earth’s centre of mass not some point like Johnston Geodetic Station that some Aussie surveyor pick out at hat.)
Let’s pick a point on the surface of the earth, say Jim’s office. So what is the lat / long of Jim’s office ? Well it depends on which datum we are working on. Jim’s office won’t have the same lat / long in WGS84 as it does on AGD84. If we know the lat / long on AGD84 and we want to find out the corresponding lat / long on WGS84 we must ?convert the lat / long on the Australian National Spheroid to XYZ coordinates. ?move the origin of the XYZ system ?apply the appropriate rotations around the X, Y and Z axis. ?convert from XYZ to lat / long on the WGS84 ellipsoid. We don’t do this in COMPASS as we considered it a beyond the experience of drilling engineers and best left to Topographic Departments. Dave McD


相关文章:
landmark___COMPASS中文使用手册
一、 COMPASS WELLPLAN FOR WINDOWS 功能简介二、 COMPANY SETUP - CREATE NEW COMPANY:公司设置-建立新的公司三、 FIELD SETUP- CREATE NEW FIELD:油气田设置-...
COMPASS-31中文版
COMPASS-31中文版_临床医学_医药卫生_专业资料。复合自主症状评分 COMPASS31( Composite Autonomic Symptom Score ) Orthostatic intolerance: 得分: 分值 1 0 0 1 ...
COMPASS 5000基本操作手册-PK_图文
第 3 页共 70 页 COMPASS2000 7.Spider Plot 星形图(蜘蛛图).................................错误!未定义书签。 8.Anticollision Reports ...
compass操作指南
compass操作指南_电子/电路_工程科技_专业资料。compass操作指南定向井设计暨 compass 操作指南 一、 定向井设计需要的基本数据 1、单井 (1) 所钻井井口的大地...
COMPASS98软件操作手册
COMPASS98软件操作手册_计算机软件及应用_IT/计算机_专业资料 暂无评价|0人阅读|0次下载|举报文档COMPASS98软件操作手册_计算机软件及应用_IT/计算机_专业资料。概述...
COMPASS软件使用简要说明
到达指定点 输入要瞄准的目标点或者选择靶点, COMPASS 将计算到达目标点所需要的造斜率 和变方位率。 到达指定垂深 输入要瞄准的目标点或者选择靶点,同时指定垂深,...
COMPASS使用手册,兰德马克说明书
简明使用手册 Compass for Windows5.3.1 简明使用手册 目 录 一、 二、 三、 四、 五、 六、 七、 八、 九、 十、 COMPASS WELLPLAN FOR WINDOWS 功能...
基于Java的Luncene的compass框架说明使用技术文档
. <property name="driverClassName" value="org.gjt.mm.mysq l.Driver"/> 20. <property name="url" value="jdbc:mysql://localhost:3306 /ssh2compass?...
Compass力场简介
COMPASS 力场也是第一个把以往分别处理的有机分 子体系的力场与无机分子体系的力场统一的分子力场, 能够模拟有机和无机小分 子,高分子,一些金属离子、金属氧化...
Matlab compass罗盘函数的用法
Matlab compass罗盘函数的用法_计算机软件及应用_IT/计算机_专业资料。Matlab compass罗盘函数的用法 compass函数用法举例说明 Matlab compass 函数用法 MATLAB Function ...
更多相关标签: